Skip to content

Commit 0cf61a5

Browse files
committed
Good draft
1 parent ebb9dd7 commit 0cf61a5

File tree

28 files changed

+468
-502
lines changed

28 files changed

+468
-502
lines changed

docs/data-ai/capture-data/conditional-sync.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -126,7 +126,7 @@ In this example we will continue to use [`sync-at-time:timesyncsensor`](https://
126126
You will need to follow the same steps with your module:
127127

128128
{{< table >}}
129-
{{% tablestep number=1 %}}
129+
{{% tablestep start=1 %}}
130130
**Add the sensor to your machine**
131131

132132
On your machine's **CONFIGURE** page, click the **+** button next to your machine part in the left menu.
@@ -138,7 +138,7 @@ Click **Add module**, then enter a name or use the suggested name for your senso
138138

139139
<!-- markdownlint-disable-file MD034 -->
140140

141-
{{% tablestep number=2 %}}
141+
{{% tablestep %}}
142142
**Configure your time frame**
143143

144144
Go to the new component panel and copy and paste the following attribute template into your sensor’s attributes field:

docs/data-ai/capture-data/filter-before-sync.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -16,20 +16,20 @@ Contributors have written several filtering {{< glossary_tooltip term_id="module
1616
The following steps use the [`filtered_camera`](https://app.viam.com/module/viam/filtered-camera) module:
1717

1818
{{< table >}}
19-
{{% tablestep number=1 %}}
19+
{{% tablestep start=1 %}}
2020
**Add an ML model service to your machine**
2121

2222
Add an ML model service on your machine that is compatible with the ML model you want to use, for example [TFLite CPU](https://github.com/viam-modules/mlmodel-tflite).
2323

2424
{{% /tablestep %}}
25-
{{% tablestep number=2 %}}
25+
{{% tablestep %}}
2626
**Select a suitable ML model**
2727

2828
Click **Select model** on the ML model service configuration panel, then select an [existing model](https://app.viam.com/registry?type=ML+Model) you want to use, or click **Upload a new model** to upload your own.
2929
If you're not sure which model to use, you can use [`EfficientDet-COCO`](https://app.viam.com/ml-model/viam-labs/EfficientDet-COCO) from the **Registry**, which can detect people and animals, among other things.
3030

3131
{{% /tablestep %}}
32-
{{% tablestep number=3 %}}
32+
{{% tablestep %}}
3333
**Add a vision service to use with the ML model**
3434

3535
You can think of the vision service as the bridge between the ML model service and the output from your camera.
@@ -38,7 +38,7 @@ Add and configure the `vision / ML model` service on your machine.
3838
From the **Select model** dropdown, select the name of your ML model service (for example, `mlmodel-1`).
3939

4040
{{% /tablestep %}}
41-
{{% tablestep number=4 %}}
41+
{{% tablestep %}}
4242
**Configure the filtered camera**
4343

4444
The `filtered-camera` {{< glossary_tooltip term_id="modular-resource" text="modular component" >}} pulls the stream of images from the camera you configured earlier, and applies the vision service to it.
@@ -68,7 +68,7 @@ Additionally, you can also add a buffer window with `window_seconds` which contr
6868
If you were to set `window_seconds` to `3`, the camera would also capture and sync images from the 3 seconds before a person appeared in the camera stream.
6969

7070
{{% /tablestep %}}
71-
{{% tablestep number=5 %}}
71+
{{% tablestep %}}
7272
**Configure data capture and sync on the filtered camera**
7373

7474
Configure data capture and sync on the filtered camera just as you did before for the physical camera.
@@ -77,14 +77,14 @@ The filtered camera will only capture image data that passes the filters you con
7777
Turn off data capture on your original camera if you haven't already, so that you don't capture duplicate or unfiltered images.
7878

7979
{{% /tablestep %}}
80-
{{% tablestep number=6 %}}
80+
{{% tablestep %}}
8181
**Save to start capturing**
8282

8383
Save the config.
8484
With cloud sync enabled, captured data is automatically uploaded to Viam after a short delay.
8585

8686
{{% /tablestep %}}
87-
{{% tablestep number=7 %}}
87+
{{% tablestep %}}
8888
**View filtered data on Viam**
8989

9090
Once you save your configuration, place something that is part of your trained ML model within view of your camera.
@@ -96,7 +96,7 @@ If no data appears after the sync interval, check the [**Logs**](/manage/trouble
9696
You can test the vision service from the [**CONTROL** tab](/manage/troubleshoot/teleoperate/default-interface/) to see its classifications and detections live.
9797

9898
{{% /tablestep %}}
99-
{{% tablestep number=8 %}}
99+
{{% tablestep %}}
100100
**(Optional) Trigger sync with custom logic**
101101

102102
By default, the captured data syncs at the regular interval you specified in the data capture config.

docs/data-ai/data/export.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -40,15 +40,15 @@ Then authenticate your CLI session with Viam using one of the following options:
4040
To export your data from the cloud using the Viam CLI:
4141

4242
{{< table >}}
43-
{{% tablestep number=1 %}}
43+
{{% tablestep start=1 %}}
4444
**Filter the data you want to download**
4545

4646
Navigate to the [**DATA**](https://app.viam.com/data/view) page.
4747

4848
Use the filters on the left side of the page to filter only the data you wish to export.
4949

5050
{{% /tablestep %}}
51-
{{% tablestep number=2 %}}
51+
{{% tablestep %}}
5252
**Copy the export command from the DATA page**
5353

5454
In the upper right corner of the **DATA** page, click the **Export** button.
@@ -57,7 +57,7 @@ Click **Copy export command**.
5757
This copies the command, including your org ID and the filters you selected, to your clipboard.
5858

5959
{{% /tablestep %}}
60-
{{% tablestep number=3 %}}
60+
{{% tablestep %}}
6161
**Run the command**
6262

6363
Run the copied command in a terminal:

docs/data-ai/data/query.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -42,14 +42,14 @@ You must have the [owner role](/manage/manage/rbac/) in order to query data on V
4242
{{% tab name="Web UI" %}}
4343

4444
{{< table >}}
45-
{{% tablestep number=1 %}}
45+
{{% tablestep start=1 %}}
4646
**Query with SQL or MQL**
4747

4848
Navigate to the [**Query** page](https://app.viam.com/data/query).
4949
Then, select either **SQL** or **MQL** from the **Query mode** dropdown menu on the right-hand side.
5050

5151
{{% /tablestep %}}
52-
{{% tablestep number=2 %}}
52+
{{% tablestep %}}
5353
**Run your query**
5454

5555
This example query returns the last 5 readings from any components named `my-sensor` in your organization:
@@ -203,7 +203,7 @@ WHERE component_name = 'sensor-1'
203203
{{% /expand %}}
204204
205205
{{% /tablestep %}}
206-
{{% tablestep number=3 %}}
206+
{{% tablestep %}}
207207
**Review results**
208208
209209
Click **Run query** when ready to perform your query and get matching results.
@@ -299,7 +299,7 @@ If you want to query data from third party tools, you have to configure data que
299299
You can use third-party tools, such as the [`mongosh` shell](https://www.mongodb.com/docs/mongodb-shell/) or [MongoDB Compass](https://www.mongodb.com/docs/compass/current/), to query captured sensor data.
300300
301301
{{< table >}}
302-
{{% tablestep number=1 %}}
302+
{{% tablestep start=1 %}}
303303
**Connect to your Viam organization's data**
304304
305305
Run the following command to connect to your Viam organization's MongoDB Atlas instance from `mongosh` using the connection URI you obtained during query configuration:
@@ -309,7 +309,7 @@ mongosh "mongodb://db-user-abcd1e2f-a1b2-3c45-de6f-ab123456c123:YOUR-PASSWORD-HE
309309
```
310310
311311
{{% /tablestep %}}
312-
{{% tablestep number=2 %}}
312+
{{% tablestep %}}
313313
**Query data from a compatible client**
314314
315315
Once connected, you can run SQL or MQL statements to query captured data directly.

docs/data-ai/data/visualize.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -205,14 +205,14 @@ Select a tab below to learn how to configure your visualization tool for use wit
205205
#### Grafana
206206

207207
{{< table >}}
208-
{{% tablestep number=1 %}}
208+
{{% tablestep start=1 %}}
209209
**Choose Grafana instance**
210210

211211
[Install](https://grafana.com/docs/grafana/latest/setup-grafana/installation/) or set up Grafana.
212212
You can use either a local instance of Grafana Enterprise or Grafana Cloud, and can use the free trial version of Grafana Cloud if desired.
213213

214214
{{% /tablestep %}}
215-
{{% tablestep number=2 %}}
215+
{{% tablestep %}}
216216
**Install connector to MongoDB data source**
217217

218218
Navigate to your Grafana web UI.
@@ -223,7 +223,7 @@ Go to **Connections > Add new connection** and add the [Grafana MongoDB data sou
223223
Install the datasource plugin.
224224

225225
{{% /tablestep %}}
226-
{{% tablestep number=3 %}}
226+
{{% tablestep %}}
227227
**Configure a data connection**
228228

229229
Navigate to the Grafana MongoDB data source that you just installed.
@@ -249,7 +249,7 @@ Enter the following information in the configuration UI for the plugin:
249249
{{<imgproc src="/tutorials/visualize-data-grafana/configure-grafana-mongodb-datasource.png" resize="800x" declaredimensions=true alt="The Grafana data source plugin configuration page, showing the connection string and username filled in with the configuration determined from the previous steps" class="shadow" >}}
250250

251251
{{< /tablestep >}}
252-
{{% tablestep number=4 %}}
252+
{{% tablestep %}}
253253
**Use Grafana for dashboards**
254254

255255
With your data connection established, you can then build dashboards that provide insight into your data.
@@ -282,7 +282,7 @@ See the [guide on querying data](/data-ai/data/query/) for more information.
282282
#### Other visualization tools
283283

284284
{{< table >}}
285-
{{% tablestep number=1 %}}
285+
{{% tablestep start=1 %}}
286286
**Install connector to MongoDB data source**
287287

288288
Some visualization clients are able to connect to the Viam MongoDB Atlas Data Federation instance natively, while others require that you install and configure an additional plugin or connector.
@@ -291,7 +291,7 @@ For example, Tableau requires both the [Atlas SQL JDBC Driver](https://www.mongo
291291
Check with the documentation for your third-party visualization tool to be sure you have the required additional software installed to connect to a MongoDB Atlas Data Federation instance.
292292

293293
{{% /tablestep %}}
294-
{{% tablestep number=2 %}}
294+
{{% tablestep %}}
295295
**Configure a data connection**
296296

297297
Most third-party visualization tools require the _connection URI_ (also called the connection string) to that database server, and the _credentials_ to authenticate to that server in order to visualize your data.
@@ -344,7 +344,7 @@ Substitute your organization ID for `<YOUR-ORG-ID>`.
344344
{{% /tabs %}}
345345

346346
{{% /tablestep %}}
347-
{{% tablestep number=3 %}}
347+
{{% tablestep %}}
348348
**Use visualization tools for dashboards**
349349

350350
Some third-party visualization tools support the ability to directly query your data within their platform to generate more granular visualizations of specific data.

docs/data-ai/train/train-tf-tflite.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -54,13 +54,13 @@ Follow the guide to [create a dataset](/data-ai/train/create-dataset/).
5454
Now that you have a dataset that contains your labeled images, you are ready to train a machine learning model.
5555

5656
{{< table >}}
57-
{{% tablestep number=1 %}}
57+
{{% tablestep start=1 %}}
5858
**Find your training dataset**
5959

6060
Navigate to your list of [**DATASETS**](https://app.viam.com/data/datasets) and select the one you want to train on.
6161

6262
{{% /tablestep %}}
63-
{{% tablestep number=2 %}}
63+
{{% tablestep %}}
6464
**Train an ML model**
6565

6666
Click **Train model** and follow the prompts.
@@ -71,7 +71,7 @@ You can train a TFLite model using **Built-in training**.
7171
Click **Next steps**.
7272

7373
{{% /tablestep %}}
74-
{{% tablestep number=3 %}}
74+
{{% tablestep %}}
7575
**Select model type**
7676

7777
Select between:
@@ -83,7 +83,7 @@ Select between:
8383
| **TensorFlow (TF)** | Best for general-purpose tasks with more computational power. |
8484

8585
{{% /tablestep %}}
86-
{{% tablestep number=4 %}}
86+
{{% tablestep %}}
8787
**Fill in the details for your ML model**
8888

8989
Enter a name for your new model.
@@ -102,7 +102,7 @@ Click **Train model**.
102102
{{< imgproc src="/tutorials/data-management/train-model.png" alt="The data tab showing the train a model pane" style="width:500px" resize="1200x" class="imgzoom fill shadow" >}}
103103

104104
{{% /tablestep %}}
105-
{{% tablestep number=5 %}}
105+
{{% tablestep %}}
106106
**Wait for your model to train**
107107

108108
The model now starts training and you can follow its process on the [**TRAINING** tab](https://app.viam.com/training).
@@ -112,7 +112,7 @@ Once the model has finished training, it becomes visible on the [**MODELS** tab]
112112
You will receive an email when your model finishes training.
113113

114114
{{% /tablestep %}}
115-
{{% tablestep number=6 %}}
115+
{{% tablestep %}}
116116
**Debug your training job**
117117

118118
From the [**TRAINING** tab](https://app.viam.com/training), click on your training job's ID to see its logs.

0 commit comments

Comments
 (0)