`.
{{% /tabs %}}
{{% /tablestep %}}
-{{% tablestep number=3 %}}
+{{% tablestep %}}
**Use visualization tools for dashboards**
Some third-party visualization tools support the ability to directly query your data within their platform to generate more granular visualizations of specific data.
diff --git a/docs/data-ai/train/train-tf-tflite.md b/docs/data-ai/train/train-tf-tflite.md
index b632ef85f8..4566aec57d 100644
--- a/docs/data-ai/train/train-tf-tflite.md
+++ b/docs/data-ai/train/train-tf-tflite.md
@@ -54,13 +54,13 @@ Follow the guide to [create a dataset](/data-ai/train/create-dataset/).
Now that you have a dataset that contains your labeled images, you are ready to train a machine learning model.
{{< table >}}
-{{% tablestep number=1 %}}
+{{% tablestep start=1 %}}
**Find your training dataset**
Navigate to your list of [**DATASETS**](https://app.viam.com/data/datasets) and select the one you want to train on.
{{% /tablestep %}}
-{{% tablestep number=2 %}}
+{{% tablestep %}}
**Train an ML model**
Click **Train model** and follow the prompts.
@@ -71,7 +71,7 @@ You can train a TFLite model using **Built-in training**.
Click **Next steps**.
{{% /tablestep %}}
-{{% tablestep number=3 %}}
+{{% tablestep %}}
**Select model type**
Select between:
@@ -83,7 +83,7 @@ Select between:
| **TensorFlow (TF)** | Best for general-purpose tasks with more computational power. |
{{% /tablestep %}}
-{{% tablestep number=4 %}}
+{{% tablestep %}}
**Fill in the details for your ML model**
Enter a name for your new model.
@@ -102,7 +102,7 @@ Click **Train model**.
{{< imgproc src="/tutorials/data-management/train-model.png" alt="The data tab showing the train a model pane" style="width:500px" resize="1200x" class="imgzoom fill shadow" >}}
{{% /tablestep %}}
-{{% tablestep number=5 %}}
+{{% tablestep %}}
**Wait for your model to train**
The model now starts training and you can follow its process on the [**TRAINING** tab](https://app.viam.com/training).
@@ -112,7 +112,7 @@ Once the model has finished training, it becomes visible on the [**MODELS** tab]
You will receive an email when your model finishes training.
{{% /tablestep %}}
-{{% tablestep number=6 %}}
+{{% tablestep %}}
**Debug your training job**
From the [**TRAINING** tab](https://app.viam.com/training), click on your training job's ID to see its logs.
diff --git a/docs/data-ai/train/train.md b/docs/data-ai/train/train.md
index 6b5703db12..474e20ed67 100644
--- a/docs/data-ai/train/train.md
+++ b/docs/data-ai/train/train.md
@@ -45,7 +45,7 @@ You must have the Viam CLI installed to upload training scripts to the registry.
## Create a training script
{{< table >}}
-{{% tablestep number=1 %}}
+{{% tablestep start=1 %}}
**Create files**
Create the following folders and empty files:
@@ -59,7 +59,7 @@ my-training/
```
{{% /tablestep %}}
-{{% tablestep number=2 %}}
+{{% tablestep %}}
**Add `setup.py` code**
Add the following code to `setup.py`:
@@ -79,7 +79,7 @@ setup(
```
{{% /tablestep %}}
-{{< tablestep number=3 >}}
+{{< tablestep >}}
Add training.py
code
@@ -524,7 +524,7 @@ if __name__ == "__main__":
{{% /expand %}}
{{% /tablestep %}}
-{{< tablestep number=4 >}}
+{{< tablestep >}}
Understand template script parsing functionality
When a training script is run, the Viam platform passes the dataset file for the training and the designated model output directory to the script.
@@ -627,7 +627,7 @@ Depending on if you are training a classification or detection model, the templa
If the script you are creating does not use an image dataset, you only need the model output directory.
{{% /tablestep %}}
-{{% tablestep number=5 %}}
+{{% tablestep %}}
**Add logic to produce the model artifact**
Fill in the `build_and_compile_model` function.
@@ -636,7 +636,7 @@ In this part of the script, you use data and annotations from the dataset file t
As an example, you can refer to the logic from model/training.py from this [example classification training script](https://github.com/viam-modules/classification-tflite) that trains a classification model using TensorFlow and Keras.
{{% /tablestep %}}
-{{% tablestep number=6 %}}
+{{% tablestep %}}
**Save the model artifact**
In this example template, the training job produces a model artifact.
@@ -649,13 +649,13 @@ You must fill in the `save_model()` and `save_labels()` functions.
As an example, refer to the logic from model/training.py from this [example classification training script](https://github.com/viam-modules/classification-tflite) that trains a classification model using TensorFlow and Keras.
{{% /tablestep %}}
-{{% tablestep number=7 %}}
+{{% tablestep %}}
**Update the main method**
Update the main to call the functions you have just created.
{{% /tablestep %}}
-{{% tablestep number=8 %}}
+{{% tablestep %}}
**Use Viam APIs in a training script**
To access [Viam APIs](/dev/reference/apis/) within a custom training script, use the environment variables `API_KEY` and `API_KEY_ID` to establish a connection.
@@ -682,7 +682,7 @@ async def connect() -> ViamClient:
You can export one of your Viam datasets to test your training script locally.
{{< table >}}
-{{% tablestep number=1 %}}
+{{% tablestep start=1 %}}
**Export your dataset**
You can get the dataset ID from the dataset page or using the [`viam dataset list`](/dev/tools/cli/#dataset) command:
@@ -695,7 +695,7 @@ The dataset will be formatted like the one Viam produces for the training.
Use the `parse_filenames_and_labels_from_json` and `parse_filenames_and_bboxes_from_json` functions to get the images and annotations from your dataset file.
{{% /tablestep %}}
-{{% tablestep number=2 %}}
+{{% tablestep %}}
**Run your training script locally**
Install any required dependencies and run your training script specifying the path to the dataset.jsonl file from your exported dataset:
@@ -713,7 +713,7 @@ python3 -m model.training --dataset_file=/path/to/dataset.jsonl \
To be able to use your training script in the Viam platform, you must upload it to the Viam Registry.
{{< table >}}
-{{% tablestep number=1 %}}
+{{% tablestep start=1 %}}
**Package the training script as a tar.gz source distribution**
Before you can upload your training script to Viam, you have to compress your project folder into a tar.gz file:
@@ -727,7 +727,7 @@ You can refer to the directory structure of this [example classification trainin
{{% /alert %}}
{{% /tablestep %}}
-{{% tablestep number=2 %}}
+{{% tablestep %}}
**Upload a training script**
To upload your custom training script to the registry, use the `viam training-script upload` command.
@@ -776,7 +776,7 @@ You can view uploaded training scripts by navigating to the [registry's **Traini
After uploading the training script, you can run it by submitting a training job using the web UI, the CLI or the [ML training client API](/dev/reference/apis/ml-training-client/#submittrainingjob).
{{< table >}}
-{{% tablestep number=1 %}}
+{{% tablestep start=1 %}}
**Create the training job**
{{< tabs >}}
@@ -813,7 +813,7 @@ You can get the dataset id from the **DATASET** tab of the **DATA** page or by r
{{< /tabs >}}
{{% /tablestep %}}
-{{% tablestep number=2 %}}
+{{% tablestep %}}
**Check on training job process**
You can view your training job on the **DATA** page's [**TRAINING** tab](https://app.viam.com/training).
@@ -829,7 +829,7 @@ viam train list --org-id= --job-status=unspecified
```
{{% /tablestep %}}
-{{% tablestep number=3 %}}
+{{% tablestep %}}
**Debug your training job**
From the **DATA** page's [**TRAINING** tab](https://app.viam.com/training), click on your training job's ID to see its logs.
diff --git a/docs/data-ai/train/upload-external-data.md b/docs/data-ai/train/upload-external-data.md
index 6b40e0a712..6d736e113b 100644
--- a/docs/data-ai/train/upload-external-data.md
+++ b/docs/data-ai/train/upload-external-data.md
@@ -60,14 +60,14 @@ If you do not want the data deleted from your machine, copy the data to a new fo
{{% /alert %}}
{{< table >}}
-{{% tablestep number=1 %}}
+{{% tablestep start=1 %}}
**Organize your data**
Put the data you want to sync in a directory on your machine.
All of the data in the folder will be synced, so be sure that you want to upload all of the contents of the folder.
{{% /tablestep %}}
-{{% tablestep number=2 %}}
+{{% tablestep %}}
**Configure sync from the additional folder**
In the **Additional paths**, enter the full path to the directory where the data you want to upload is stored, for example, `/Users/Artoo/my_cat_photos`.
@@ -79,14 +79,14 @@ Toggle **Syncing** to on (green) if it isn't already on.
Click **Save** in the top right corner of the page.
{{% /tablestep %}}
-{{% tablestep number=3 %}}
+{{% tablestep %}}
**Confirm that your data uploaded**
Navigate to your [**DATA** page](https://app.viam.com/data/view) and confirm that your data appears there.
If you don't see your files yet, wait a few moments and refresh the page.
{{% /tablestep %}}
-{{% tablestep number=4 %}}
+{{% tablestep %}}
**Remove the folder path**
Once the data has uploaded, navigate back to your data service config.
@@ -123,13 +123,13 @@ pip install viam-sdk
### Instructions
{{< table >}}
-{{% tablestep number=1 %}}
+{{% tablestep start=1 %}}
**Get API key**
Go to your organization's setting page and create an API key for your individual {{< glossary_tooltip term_id="part" text="machine part" >}}, {{< glossary_tooltip term_id="part" text="machine" >}}, {{< glossary_tooltip term_id="location" text="location" >}}, or {{< glossary_tooltip term_id="organization" text="organization" >}}.
{{% /tablestep %}}
-{{% tablestep number=2 %}}
+{{% tablestep %}}
**Add a `file_upload_from_path` API call**
Create a Python script and use the `file_upload_from_path` method to upload your data, depending on whether you are uploading one or multiple files:
@@ -234,7 +234,7 @@ if __name__ == "__main__":
{{< /tabs >}}
{{% /tablestep %}}
-{{% tablestep number=3 %}}
+{{% tablestep %}}
**Run your code**
Save and run your code once.
@@ -268,7 +268,7 @@ Install the mobile app from the [App Store](https://apps.apple.com/vn/app/viam-r
### Instructions
{{< table >}}
-{{% tablestep number=1 %}}
+{{% tablestep start=1 %}}
**Navigate to your machine**
In the Viam mobile app, select an organization by clicking on the menu icon in the top left corner and tapping an organization.
@@ -276,7 +276,7 @@ In the Viam mobile app, select an organization by clicking on the menu icon in t
Tap the **Locations** tab and select a location, then select the machine you want your data to be associated with.
{{% /tablestep %}}
-{{% tablestep number=2 %}}
+{{% tablestep %}}
**Upload images**
Tap the menu button marked "**...**" in the upper right corner.
diff --git a/docs/manage/fleet/provision/end-user-setup.md b/docs/manage/fleet/provision/end-user-setup.md
index 1f6b3ec644..d914312c97 100644
--- a/docs/manage/fleet/provision/end-user-setup.md
+++ b/docs/manage/fleet/provision/end-user-setup.md
@@ -3,7 +3,7 @@ title: "Complete end-user setup for a machine"
linkTitle: "Set up machine (end-user)"
weight: 69
type: "docs"
-description: "If you have received a machine that uses Viam and have been pointed to this guide, this guide will show you how to set it up."
+description: "If you have a machine that uses Viam and have been pointed to this guide, this guide will show you how to set it up."
images: ["/platform/provisioning-demo.gif"]
videos: ["/platform/provisioning-demo.webm", "/platform/provisioning-demo.mp4"]
languages: []
@@ -18,9 +18,9 @@ aliases:
cost: "0"
---
-If you have received a machine with Viam pre-installed on it, this guide will show you how to complete your device setup using either the [Viam mobile app](#set-up-your-machine-using-the-viam-mobile-app) or the [{{< glossary_tooltip term_id="captive-web-portal" text="captive portal" >}}](#set-up-your-machine-using-the-captive-portal).
+If you have a machine with Viam pre-installed on it, this guide will show you how to complete your device setup using either the [Viam mobile app](#set-up-your-machine-using-the-viam-mobile-app) or the [{{< glossary_tooltip term_id="captive-web-portal" text="captive portal" >}}](#set-up-your-machine-using-the-captive-portal).
-Unless you have been told to use the captive portal, we recommend you use the Viam mobile app.
+Whether you need to use the Viam mobile app or the captive portal, depends on how [provisioning was set up](/manage/fleet/provision/setup/) on your machine.
## Prerequisites
@@ -32,7 +32,7 @@ Unless you have been told to use the captive portal, we recommend you use the Vi
{{