-
Notifications
You must be signed in to change notification settings - Fork 258
Description
⚙️ Your current environment
The output of python collect_env.py
### Environment Information ###
Operating System: `Linux-5.10.134-14.zncgsl6.x86_64-x86_64-with-glibc2.35`
Python Version: `3.10.0 | packaged by conda-forge | (default, Nov 20 2021, 02:24:10) [GCC 9.4.0]`
llm-compressor Version: `0.8.1`
compressed-tensors Version: `0.12.2`
transformers Version: `4.56.2`
torch Version: `2.8.0`
CUDA Devices: `['NVIDIA H20', 'NVIDIA H20', 'NVIDIA H20', 'NVIDIA H20']`
AMD Devices: `None`
🐛 Describe the bug
I use the following code to do kv cache fp8 quantization, and wish to use the kv-fp8 model in vllm. But found k_scale and v_scale are all ZERO.
MY CODE
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor import oneshot
MODEL_ID = "/mnt/home/model/Llama-3.1-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
NUM_CALIBRATION_SAMPLES = 512 # 512 samples is a good starting point
MAX_SEQUENCE_LENGTH = 2048
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
def process_and_tokenize(example):
text = tokenizer.apply_chat_template(example["messages"], tokenize=False)
return tokenizer(
text,
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)
ds = ds.map(process_and_tokenize, remove_columns=ds.column_names)
recipe = """
quant_stage:
quant_modifiers:
QuantizationModifier:
kv_cache_scheme:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
"""
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to(model.device)
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
SAVE_DIR = MODEL_ID.split("/")[-1] + "-FP8-KV"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
pic of kv scale is zero

🛠️ Steps to reproduce
No response