-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshuffle_mutator.py
67 lines (49 loc) · 1.92 KB
/
shuffle_mutator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from numpy import nan as np_nan
from pygenalgo.genome.chromosome import Chromosome
from pygenalgo.operators.mutation.mutate_operator import MutationOperator
class ShuffleMutator(MutationOperator):
"""
Description:
Shuffle mutator mutates the chromosome by shuffling the gene
values between two randomly selected gene end-positions.
"""
def __init__(self, mutate_probability: float = 0.1):
"""
Construct a 'ShuffleMutator' object with a given probability value.
:param mutate_probability: (float).
"""
# Call the super constructor with the provided
# probability value.
super().__init__(mutate_probability)
# _end_def_
def mutate(self, individual: Chromosome) -> None:
"""
Perform the mutation operation by shuffling the genes
between at two random positions.
:param individual: (Chromosome).
:return: None.
"""
# If the mutation probability is higher than
# a uniformly random value, make the changes.
if self.is_operator_applicable():
# Select randomly two mutation end-points.
i, j = self.rng.choice(len(individual), size=2, replace=False,
shuffle=False)
# Swap indices (if necessary).
if i > j:
i, j = j, i
# _end_if_
# Make a slice list of the genes
# we want to shuffle: i -> j.
sliced_chromosome = individual[i:j]
# Shuffle the copied slice in place.
self.rng.shuffle(sliced_chromosome)
# Put back the shuffled items.
individual[i:j] = sliced_chromosome
# Invalidate the fitness of the chromosome.
individual.fitness = np_nan
# Increase the mutator counter.
self.inc_counter()
# _end_if_
# _end_def_
# _end_class_