-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathFeature_test.m
120 lines (102 loc) · 4.16 KB
/
Feature_test.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
clc;
clear all;
tic;
format long;
format compact;
'SaCoDE'
% Objective function
fun=@jFitnessFunction2;
load('outGeEvaNumGbest1_3.mat');
Feature = seletionResult;
for n = 3 :3
if n == 1
%Data 1
load('C:\Users\Administrator\Desktop\网课\SaCoDE\grammatical_facial_expression01.txt');
dataset_train=grammatical_facial_expression01;
load('C:\Users\Administrator\Desktop\网课\SaCoDE\test\grammatical_facial_expression01.txt');
dataset_test=grammatical_facial_expression01;
elseif n == 2
%Data 2
load('C:\Users\Administrator\Desktop\网课\SaCoDE\SemeionHandwrittenDigit.txt');
dataset_train=SemeionHandwrittenDigit;
load('C:\Users\Administrator\Desktop\网课\SaCoDE\test\SemeionHandwrittenDigit.txt');
dataset_test=SemeionHandwrittenDigit;
%load('SemeionHandwrittenDigit.txt');
%dataset=SemeionHandwrittenDigit;
elseif n == 3
%Data 3
load('C:\Users\Administrator\Desktop\网课\SaCoDE\isolet5.txt');
dataset_train=isolet5;
load('C:\Users\Administrator\Desktop\网课\SaCoDE\test\isolet5.txt');
dataset_test=isolet5;
elseif n == 4
%Data 4
load('C:\Users\Administrator\Desktop\网课\SaCoDE\MultipleFeaturesDigit.txt');
dataset_train=MultipleFeaturesDigit;
load('C:\Users\Administrator\Desktop\网课\SaCoDE\test\MultipleFeaturesDigit.txt');
dataset_test=MultipleFeaturesDigit;
elseif n == 5
%Data 5
load('C:\Users\Administrator\Desktop\网课\SaCoDE\HAPTDataSet.txt');
dataset_train=HAPTDataSet;
load('C:\Users\Administrator\Desktop\网课\SaCoDE\test\HAPTDataSet.txt');
dataset_test=HAPTDataSet;
elseif n == 6
%Data 6
load('C:\Users\Administrator\Desktop\网课\SaCoDE\har.txt');
dataset_train=har;
load('C:\Users\Administrator\Desktop\网课\SaCoDE\test\har.txt');
dataset_test=har;
elseif n == 7
%Data 7
load('C:\Users\Administrator\Desktop\网课\SaCoDE\UJIIndoorLoc.txt');
dataset_train=UJIIndoorLoc;
load('C:\Users\Administrator\Desktop\网课\SaCoDE\test\UJIIndoorLoc.txt');
dataset_test=UJIIndoorLoc;
elseif n == 8
%Data 8
load('C:\Users\Administrator\Desktop\网课\SaCoDE\MadelonValid.txt');
dataset_train=MadelonValid;
load('C:\Users\Administrator\Desktop\网课\SaCoDE\test\MadelonValid.txt');
dataset_test=MadelonValid;
elseif n == 9
%Data 9
load('C:\Users\Administrator\Desktop\网课\SaCoDE\OpticalRecognitionofHandwritten.txt');
dataset_train=OpticalRecognitionofHandwritten;
load('C:\Users\Administrator\Desktop\网课\SaCoDE\test\OpticalRecognitionofHandwritten.txt');
dataset_test=OpticalRecognitionofHandwritten;
elseif n == 10
%Data 10
load('C:\Users\Administrator\Desktop\网课\SaCoDE\ConnectionistBenchData.txt');
dataset_train=ConnectionistBenchData;
load('C:\Users\Administrator\Desktop\网课\SaCoDE\test\ConnectionistBenchData.txt');
dataset_test=ConnectionistBenchData;
elseif n == 11
%Data 11
load('C:\Users\Administrator\Desktop\网课\SaCoDE\wdbc.txt');
dataset_train=wdbc;
load('C:\Users\Administrator\Desktop\网课\SaCoDE\test\wdbc.txt');
dataset_test=wdbc;
elseif n == 12
%Data 12
load('C:\Users\Administrator\Desktop\网课\SaCoDE\LungCancer.txt');
dataset_train=LungCancer;
load('C:\Users\Administrator\Desktop\网课\SaCoDE\test\LungCancer.txt');
dataset_test=LungCancer;
end
% feat=dataset(:,1:end-1); labels=dataset(:,end);
% X_train = feat;
% Y_train = labels;
% % number of features
% numF = size(X_train,2);
% % Infinite Latent Feature Selection - ICCV 2017
% [ranking, weights] = ILFS(X_train, Y_train , 6, 0 );
% k = round(0.5 * numF);
% data_tr = X_train(:,ranking(1:k));
% dataset = [data_tr labels];
fit = zeros(1,100);
for i = 1 :100
fit(i) = fun(dataset_train,dataset_test,Feature(n,:),1);
end
disp(mean(fit));
end