-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
245 lines (194 loc) · 9.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from model_np import LinearModel
from model_np import RidgeLinearModel
from model_tf import BayesianLinearModel
from preprocess import Preprocessor
from util import load_dataset_csv, load_data, load_test_dataset_csv
from plot import plot_3d, plot_2d_map
import numpy as np
import tensorflow as tf
import random
import os, sys, csv, argparse
from sklearn.model_selection import KFold
import logging
def load_data(x_path, y_path, shuffle=True):
xs, ys = load_dataset_csv(x_path, y_path)
n = len(xs)
shuffle_indices = range(n)
np.random.shuffle(shuffle_indices)
return xs, ys, n
'''
Filter noise data
'''
def filter_data(x):
xs_normalize_filtered = x
xs_normalize_filtered = xs_normalize_filtered[xs_normalize_filtered[:, 0] > 0.23774283]
xs_normalize_filtered = xs_normalize_filtered[xs_normalize_filtered[:, 0] < 0.89]
xs_normalize_filtered = xs_normalize_filtered[xs_normalize_filtered[:, 1] > 0.120027752]
return xs_normalize_filtered
'''
Place additional gaussian basis
'''
def crafted_gaussian_feature(means, sigmas):
means = np.vstack((means, [0.13876, 0.508788159], [0.46253469, 0.092506938], [0.6475, 0.185]))
sigmas = np.vstack((sigmas, [0.285, 0.3], [0.5, 0.285], [0.2, 0.1]))
return means, sigmas
def get_model(args, shape):
if args.model == 'ml':
return LinearModel(shape, optimizer=args.optimizer, lr=args.lr)
elif args.model == 'map':
logging.info('MAP hyperparameters [alpha: %f]' % args.alpha)
return RidgeLinearModel(shape, optimizer=args.optimizer, lr=args.lr, alpha=args.alpha)
elif args.model == 'bayes':
logging.info('Bayes hyperparameters [m0: %f, s0: %f]' % (args.m0, args.s0))
return BayesianLinearModel(shape, optimizer=args.optimizer, m0=args.m0, s0=args.s0, beta=args.beta)
def get_means_sigmas(args, x):
if args.pre == 'kmeans':
return Preprocessor().compute_gaussian_basis(x, deg=int(args.d), scale=args.scale)
elif args.pre == 'grid':
return Preprocessor().grid2d_means(np.min(x[:,0]), np.max(x[:,0]) , np.min(x[:,1]), np.max(x[:,1]), step=args.gsize, scale=args.scale)
def train(args, sess, model, phi_xs_train, ys_train):
sess.run(tf.global_variables_initializer())
model.fit(sess, phi_xs_train, ys_train, epoch=args.epoch, batch_size=args.batch_size)
loss = model.eval(sess, phi_xs_train, ys_train)
return loss
def train_cross_validation(args, sess, model, phi_xs_train, ys_train):
kf = KFold(n_splits=args.K)
w_best = None
validation_loss = 0
for train_index, validation_index in kf.split(phi_xs_train):
sess.run(tf.global_variables_initializer())
model.fit(sess, phi_xs_train[train_index], ys_train[train_index], epoch=args.epoch, batch_size=args.batch_size)
loss = model.eval(sess, phi_xs_train[validation_index], ys_train[validation_index])
logging.info('Validation loss = %f' % (loss))
validation_loss += loss
model.reset(sess)
return validation_loss / float(args.K)
def test_model(args):
logging.basicConfig(format='[%(asctime)s] %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO)
logging.info('Loading data...')
# Load test dataset
xs, n = load_test_dataset_csv(args.X)
# Data preprocessing
preprocessor = Preprocessor()
rng = abs(args.max - args.min)
xs_n = preprocessor.normalize(xs, rng)
# Load means and sigmas
logging.info('Loading mean data from %s' % (args.mean))
means = np.load(args.mean)
logging.info('Loading sigma data from %s' % (args.sigma))
sigmas = np.load(args.sigma)
# Setup preprocessing function
def phi(x):
pre = Preprocessor()
return pre.gaussian(pre.normalize(x, rng), means, sigmas)
logging.info('Preprocessing (d = %d)' % (len(means) + 1))
phi_xs = phi(xs)
phi_dim = len(phi_xs[0])
model = get_model(args, (phi_dim,))
logging.info('Using model %s' % (args.model))
def f(x):
return np.round(np.clip(model.test(sess, x), args.min, args.max))
with tf.Session() as sess:
assert args.output is not None
logging.info('Loading model from %s' % (args.load))
sess.run(tf.global_variables_initializer())
model.load_from_file(sess, args.load)
preds = f(phi_xs)
logging.info('Save predictions at %s' % args.output)
with open(args.output, 'w') as file:
for pred in preds:
file.write('%f\n' % pred)
def train_model(args):
logging.basicConfig(format='[%(asctime)s] %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO)
logging.info('Train model')
logging.info('Loading data...')
# Split data into training set and test set
xs, ys, n = load_data(args.X, args.Y, shuffle=True)
n_train = int(args.frac * n)
# Data preprocessing
preprocessor = Preprocessor()
rng = abs(args.max - args.min)
xs_n = preprocessor.normalize(xs, rng)
xs_n_filtered = xs_n
if args.craft:
xs_n_filtered = filter_data(xs_n_filtered)
# Feature extraction
logging.info('Computing means and sigmas (%s)...' % args.pre)
means, sigmas = get_means_sigmas(args, xs_n_filtered)
if args.craft:
means, sigmas = crafted_gaussian_feature(means, sigmas)
def phi(x):
pre = Preprocessor()
return pre.gaussian(pre.normalize(x, rng), means, sigmas)
logging.info('Preprocessing... (d = %d; craft-feature %d)' % (means.shape[0], args.craft))
phi_xs = phi(xs)
phi_xs_train, ys_train = phi_xs[:n_train], ys[:n_train]
phi_xs_test, ys_test = phi_xs[n_train:], ys[n_train:]
phi_dim = len(phi_xs_train[0])
model = get_model(args, (phi_dim,))
logging.info('Using model %s (plot = %s)' % (args.model, args.plot))
def f(x):
return np.round(np.clip(model.test(sess, x), args.min, args.max))
with tf.Session() as sess:
logging.info('Training... (optimizer = %s)' % args.optimizer)
if args.K <= 1:
train_loss = train(args, sess, model, phi_xs_train, ys_train)
logging.info('Training loss = %f' % train_loss)
if n_train < n:
test_loss = model.eval(sess, phi_xs_test, ys_test)
logging.info('Testing loss = %f' % test_loss)
if args.output is not None:
logging.info('Save model at %s' % args.output)
model.save_to_file(sess, args.output)
np.save(args.output + '-mean', means)
np.save(args.output + '-sigma', sigmas)
if args.plot is not None:
logging.info('Plotting... (output = %s)' % args.fig)
if args.plot == '3d':
plot_3d(f, phi, args.min, args.max, args.min, args.max, 0, 1081, args.fig)
elif args.plot == '2d':
plot_2d_map(f, phi, args.min, args.max, args.min, args.max)
else:
validation_loss = train_cross_validation(args, sess, model, phi_xs_train, ys_train)
log_filename = args.log
with open(log_filename, 'w') as log_file:
log_file.write('%s\t%s\n' % (log_filename, validation_loss))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--task', help='train/test task',
choices=['train', 'test'], required=True, type=str, default='train')
parser.add_argument('--X', help='data', required=True, type=str)
parser.add_argument('--Y', help='ground truth', type=str)
parser.add_argument('--K', help='k-fold', type=int, default=3)
parser.add_argument('--epoch', help='epoch', type=int, default=50)
parser.add_argument('--batch_size', help='batch size', type=int, default=128)
parser.add_argument('--lr', help='learning rate', type=float, default=0.5)
parser.add_argument('--d', help='dimension of feature', type=float, default=512)
parser.add_argument('--gsize', help='grid size', type=float, default=0.1)
parser.add_argument('--scale', help='sigma scale', type=float, default=2.5)
parser.add_argument('--min', help='minimum value of input space', type=float, default=0)
parser.add_argument('--max', help='maximum value of input space', type=float, default=1081)
parser.add_argument('--frac', help='fraction of training', type=float, default=0.8)
parser.add_argument('--alpha', help='l2 penalty scale for map', type=float, default=0.01)
parser.add_argument('--beta', help='beta (noise variance) for bayesian', type=float, default=1.0 / 0.2**2)
parser.add_argument('--m0', help='m0 (mean) for bayesian', type=float, default=0.0)
parser.add_argument('--s0', help='s0 (variance) for bayesian', type=float, default=2.0)
parser.add_argument('--model', help='model',
choices=['ml', 'map', 'bayes'], default='ml')
parser.add_argument('--pre', help='preprocess approach',
choices=['kmeans', 'grid'], default='grid')
parser.add_argument('--optimizer', help='optimzier',
choices=['ls', 'seq'], default='ls')
parser.add_argument('--plot', help='enable plot', type=str, default=None)
parser.add_argument('--craft', help='enable crafted features', type=bool, default=False)
parser.add_argument('--fig', help='figure output', type=str, default=None)
parser.add_argument('--log', help='log output', type=str, default='log.log')
parser.add_argument('--output', help='output data, model or predictions', type=str, default=None)
parser.add_argument('--load', help='model load', type=str, default=None)
parser.add_argument('--mean', help='mean load', type=str, default=None)
parser.add_argument('--sigma', help='sigma load', type=str, default=None)
args = parser.parse_args()
if args.task == 'train':
train_model(args)
else:
test_model(args)