-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutil.py
50 lines (32 loc) · 1.19 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import pandas as pd
import numpy as np
import random
import csv
def generate_1d_dataset(N, variance=100):
X = np.matrix(range(N)).T + 1
Y = np.matrix([random.random() * variance + i * 10 + 900 for i in range(len(X))]).T
return X, Y
def load_csv(x_path):
x_file = open(x_path, 'rb')
x_csv_reader = csv.reader(x_file, delimiter=',')
xs = np.array([x for x in x_csv_reader], dtype=np.float32)
return xs
def load_test_dataset_csv(x_path):
x_file = open(x_path, 'rb')
x_csv_reader = csv.reader(x_file, delimiter=',')
xs = np.array([x for x in x_csv_reader], dtype=np.float32)
return xs, len(xs)
def load_data(x_path, y_path, shuffle=True):
xs, ys = load_dataset_csv(x_path, y_path)
n = len(xs)
shuffle_indices = range(n)
np.random.shuffle(shuffle_indices)
return xs, ys, n
def load_dataset_csv(x_path, y_path):
x_file = open(x_path, 'rb')
y_file = open(y_path, 'rb')
x_csv_reader = csv.reader(x_file, delimiter=',')
y_csv_reader = csv.reader(y_file, delimiter=',')
xs = np.array([x for x in x_csv_reader], dtype=np.float32)
ys = np.array([y for y in y_csv_reader], dtype=np.float32)
return xs, ys