-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathFISM.py
312 lines (282 loc) · 14.1 KB
/
FISM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
'''
Tensorflow implementation of FISM
'''
import math
import numpy as np
import tensorflow as tf
from sklearn.base import BaseEstimator, TransformerMixin
from time import time
import argparse
import LoadData_ML as DATA
#################### Arguments ####################
def parse_args():
parser = argparse.ArgumentParser(description="Run FISM for ML.")
parser.add_argument('--epoch', type=int, default=50,
help='Number of epochs.')
parser.add_argument('--pretrain', type=int, default=-1,
help='flag for pretrain. 1: initialize from pretrain; 0: randomly initialize; -1: save the model to pretrain file')
parser.add_argument('--batch_size', type=int, default=80,
help='Batch size.')
parser.add_argument('--hidden_factor', type=int, default=64,
help='Number of hidden factors.')
parser.add_argument('--lamda', type=float, default=0.0001,
help='Regularizer for bilinear part.')
parser.add_argument('--lr', type=float, default=0.05,
help='Learning rate.')
parser.add_argument('--optimizer', nargs='?', default='AdagradOptimizer',
help='Specify an optimizer type (AdamOptimizer, AdagradOptimizer, GradientDescentOptimizer, MomentumOptimizer).')
parser.add_argument('--verbose', type=int, default=1,
help='Show the results per X epochs (0, 1 ... any positive integer)')
parser.add_argument('--layers', nargs='?', default='[64]',
help="Size of each layer.")
parser.add_argument('--keep_prob', nargs='?', default='[0.8,0.8]',
help='Keep probability (i.e., 1-dropout_ratio) for each deep layer and the Bi-Interaction layer. 1: no dropout. Note that the last index is for the Bi-Interaction layer.')
return parser.parse_args()
class MF(BaseEstimator, TransformerMixin):
def __init__(self, num_users, num_items, pretrain_flag, hidden_factor, epoch, batch_size, learning_rate,
lamda_bilinear, optimizer_type, verbose, layers,activation_function,keep_prob,save_file,random_seed=2016):
# bind params to class
self.batch_size = batch_size
self.learning_rate = learning_rate
self.hidden_factor = hidden_factor
self.save_file = save_file
self.pretrain_flag = pretrain_flag
self.num_users = num_users
self.num_items = num_items
self.lamda_bilinear = lamda_bilinear
self.epoch = epoch
self.random_seed = random_seed
self.optimizer_type = optimizer_type
self.verbose = verbose
self.layers=layers
self.activation_function = activation_function
self.keep_prob = np.array(keep_prob)
self.no_dropout = np.array([1 for i in xrange(len(keep_prob))])
# init all variables in a tensorflow graph
self._init_graph()
def _init_graph(self):
'''
Init a tensorflow Graph containing: input data, variables, model, loss, optimizer
'''
self.graph = tf.Graph()
with self.graph.as_default(): # , tf.device('/cpu:0'):
# Set graph level random seed
tf.set_random_seed(self.random_seed)
# Input data.
self.user = tf.placeholder(tf.int32, shape=[None]) # None
self.item_pos = tf.placeholder(tf.int32, shape=[None]) # None * 1
self.item_neg = tf.placeholder(tf.int32, shape=[None])
self.dropout_keep = tf.placeholder(tf.float32, shape=[None])
self.train_phase = tf.placeholder(tf.bool)
self.ru = tf.placeholder(tf.int32, shape=[None, None])
self.cnt = tf.placeholder(tf.float32, shape=[None])
# Variables.
self.weights = self._initialize_weights()
self.alpha = tf.placeholder(tf.float32, shape=[None])
# Model.
# _________ positive part _____________
#user_embedding = tf.nn.embedding_lookup(self.weights['user_embeddings'], self.user)
self.pos_embedding=tf.nn.embedding_lookup(self.weights['item_embeddings_p'], self.item_pos)
self.ru_embedding=tf.nn.embedding_lookup(self.weights['item_embeddings_q'],self.ru)
self.sum_embedding=tf.reduce_sum(self.ru_embedding,1)
self.pow=tf.expand_dims(tf.pow(self.cnt,self.alpha),1)
self.sum_embedding=tf.multiply(self.sum_embedding,self.pow)
self.pos=tf.reduce_sum(tf.multiply(self.sum_embedding,self.pos_embedding),1)
#self.pos=tf.reduce_sum(tf.multiply(user_embedding, pos_embedding), 1)
# _________ negative part _____________
self.neg_embedding = tf.nn.embedding_lookup(self.weights['item_embeddings_p'], self.item_neg)
self.neg=tf.reduce_sum(tf.multiply(self.sum_embedding,self.neg_embedding),1)
# Compute the loss.
self.loss = -tf.log(tf.sigmoid(self.pos - self.neg))
self.loss = tf.reduce_sum(self.loss)
regularization = tf.contrib.layers.l2_regularizer(self.lamda_bilinear)(
self.weights['item_embeddings_p'])+tf.contrib.layers.l2_regularizer(self.lamda_bilinear)(
self.weights['item_embeddings_q'])
# regularization=tf.multiply(tf.add_n([tf.square(user_embedding),tf.square(pos_embedding),tf.square(neg_embedding)]),self.lamda_bilinear)
# regularization=tf.reduce_sum(regularization)
self.loss =tf.add(self.loss,regularization)
# Optimizer.
if self.optimizer_type == 'AdamOptimizer':
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate, beta1=0.9, beta2=0.999,
epsilon=1e-8).minimize(self.loss)
elif self.optimizer_type == 'AdagradOptimizer':
self.optimizer = tf.train.AdagradOptimizer(learning_rate=self.learning_rate,
initial_accumulator_value=1e-8).minimize(self.loss)
elif self.optimizer_type == 'GradientDescentOptimizer':
self.optimizer = tf.train.GradientDescentOptimizer(learning_rate=self.learning_rate).minimize(self.loss)
elif self.optimizer_type == 'MomentumOptimizer':
self.optimizer = tf.train.MomentumOptimizer(learning_rate=self.learning_rate, momentum=0.95).minimize(
self.loss)
# init
self.saver = tf.train.Saver()
init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(init)
# number of params
total_parameters = 0
for variable in self.weights.values():
shape = variable.get_shape() # shape is an array of tf.Dimension
variable_parameters = 1
for dim in shape:
variable_parameters *= dim.value
total_parameters += variable_parameters
if self.verbose > 0:
print ("#params: %d" % total_parameters)
def _initialize_weights(self):
all_weights = dict()
all_weights['item_embeddings_p'] = tf.Variable(
tf.random_normal([self.num_items, self.hidden_factor], 0.0, 0.05), name='item_embeddings_p') # features_M * 1
all_weights['item_embeddings_q'] = tf.Variable(
tf.random_normal([self.num_items, self.hidden_factor], 0.0, 0.05), name='item_embeddings_q') # features_M * 1
return all_weights
def partial_fit(self, data): # fit a batch
feed_dict = {self.user: data['user'], self.item_pos: data['positive'], self.item_neg: data['negative'],
self.dropout_keep: self.keep_prob, self.train_phase: True, self.ru:data['ru'], self.cnt:data['cnt'],self.alpha:data['alpha']}
loss, opt = self.sess.run((self.loss, self.optimizer), feed_dict=feed_dict)
return loss
def get_random_block_from_data(self, user_id): # generate a random block of training data
user, positive, negative,ru,cnt,alpha= [], [], [], [],[],[]
all_items = data.items.values()
# get sample
pos = data.user_positive_list[user_id]
count=len(pos)-1
for item in pos:
user.append(user_id)
positive.append(item)
ru_list = list(pos)
ru_list.remove(item)
ru.append(ru_list)
neg = np.random.randint(len(all_items))
while (neg in pos):
neg = np.random.randint(len(all_items))
negative.append(neg)
cnt.append(count)
alpha.append(-0.5)
return {'user': user, 'positive': positive, 'negative': negative, 'ru':ru,'cnt':cnt,'alpha':alpha}
def spilt_user_batch(self, user_batch):
num_example=len(user_batch['positive'])
final_batch=[]
if num_example % self.batch_size == 0:
batch_count = num_example / self.batch_size
flag = 0
else:
batch_count = math.ceil(num_example / self.batch_size)
flag = 1
j = 0
for i in range(int(batch_count)):
if flag == 1 and i == batch_count - 1:
k = num_example
else:
k = j + self.batch_size
temp={}
temp['user']=user_batch['user'][j:k]
temp['positive'] = user_batch['positive'][j:k]
temp['negative'] = user_batch['negative'][j:k]
temp['ru'] = user_batch['ru'][j:k]
temp['cnt'] = user_batch['cnt'][j:k]
temp['alpha']=user_batch['alpha'][j:k]
final_batch.append(temp)
j = j + self.batch_size
return final_batch
def train(self, Train_data): # fit a dataset
for epoch in range(self.epoch):
total_loss = 0
for i in range(data.num_users):
# generate a batch
batch_xs = self.get_random_block_from_data(i)
batch_final=self.spilt_user_batch(batch_xs)
# Fit training
for batch in batch_final:
loss = self.partial_fit(batch)
total_loss = total_loss + loss
print("the total loss in %d th iteration is: %f" % (epoch, total_loss))
if self.pretrain_flag < 0:
print("Save model to file as pretrain.")
self.saver.save(self.sess, self.save_file)
def evaluate(self):
self.graph.finalize()
count = [0, 0, 0, 0,0]
rank = [[], [], [], [],[]]
for index in range(len(data.Test_data['User'])):
user = data.Test_data['User'][index]
scores = model.get_scores_per_user(user)
# get true item score
true_item_id=data.Test_data['Item'][index]
true_item_score = scores[true_item_id]
# delete visited scores
visited = data.user_positive_list[user] # get positive list for the userID
scores = np.delete(scores, visited)
# whether hit
sorted_scores = sorted(scores, reverse=True)
label = [sorted_scores[4]]
label.append([sorted_scores[9]])
label.append([sorted_scores[14]])
label.append([sorted_scores[19]])
label.append([sorted_scores[24]])
if true_item_score >= label[0]:
count[0] = count[0] + 1
rank[0].append(sorted_scores.index(true_item_score) + 1)
if true_item_score >= label[1]:
count[1] = count[1] + 1
rank[1].append(sorted_scores.index(true_item_score) + 1)
if true_item_score >= label[2]:
count[2] = count[2] + 1
rank[2].append(sorted_scores.index(true_item_score) + 1)
if true_item_score >= label[3]:
count[3] = count[3] + 1
rank[3].append(sorted_scores.index(true_item_score) + 1)
if true_item_score >= label[4]:
count[4] = count[4] + 1
rank[4].append(sorted_scores.index(true_item_score) + 1)
# print index
for i in range(5):
mrr = 0
ndcg = 0
hit_rate = float(count[i]) / len(data.Test_data['User'])
for item in rank[i]:
mrr = mrr + float(1.0) / item
ndcg = ndcg + float(1.0) / np.log2(item + 1)
mrr = mrr / len(data.Test_data['User'])
ndcg = ndcg / len(data.Test_data['User'])
k = (i + 1) * 5
print("top:%d" % k)
print("the Hit Rate is: %f" % hit_rate)
print("the MRR is: %f" % mrr)
print("the NDCG is: %f" % ndcg)
def get_scores_per_user(self, user_id): # evaluate the results for an user context, return scorelist
scorelist = []
ru, cnt, alpha = [], [], []
# get sample
pos = data.user_positive_list[user_id]
ru.append(pos)
cnt.append(len(pos))
alpha.append(-0.5)
feed_dict = {self.ru: ru, self.cnt:cnt, self.alpha: alpha}
sum_embedding = self.sess.run((self.sum_embedding), feed_dict=feed_dict)
iep=self.sess.run((self.weights['item_embeddings_p']))
sum_embedding=np.transpose(sum_embedding)
scorelist=np.matmul(iep,sum_embedding)
scorelist = scorelist.reshape(data.num_items)
return scorelist
if __name__ == '__main__':
# Data loading
args = parse_args()
data = DATA.LoadData()
activation_function = tf.nn.relu
if args.verbose > 0:
print(
"MF: factors=%d, #epoch=%d, batch=%d, lr=%.4f, lambda=%.1e, optimizer=%s"
% (
args.hidden_factor, args.epoch, args.batch_size, args.lr, args.lamda,
args.optimizer))
save_file = 'pretrain-fism/%s_%d' % ('ml1M', args.hidden_factor)
# Training
t1 = time()
model = MF(data.num_users, data.num_items, args.pretrain, args.hidden_factor, args.epoch,
args.batch_size, args.lr, args.lamda, args.optimizer, args.verbose,eval(args.layers),activation_function,eval(args.keep_prob),save_file)
model.evaluate()
print("begin train")
model.train(data.Train_data)
print("end train")
model.evaluate()
print("finish")