-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_processing.py
83 lines (58 loc) · 2.29 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from datasets import Dataset
from transformers import PreTrainedTokenizerFast
from tokenizers import (
decoders,
models,
normalizers,
pre_tokenizers,
processors,
trainers,
Tokenizer,
)
train = pd.read_csv('/data/train_essays.csv')
test = pd.read_csv('/data/test_essays.csv')
train = train.drop_duplicates(subset=['text'])
train = train.reset_index(drop=True)
def tokenize(df, LOWERCASE=False, VOCAB_SIZE=30522):
raw_tokenizer = Tokenizer(models.BPE(unk_token="[UNK]"))
raw_tokenizer.normalizer = normalizers.Sequence(
[normalizers.NFC()] + [normalizers.Lowercase()] if LOWERCASE else []
)
raw_tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel()
special_tokens = ["[UNK]", "[PAD]", "[CLS]", "[SEP]", "[MASK]"]
trainer = trainers.BpeTrainer(vocab_size=VOCAB_SIZE, special_tokens=special_tokens)
dataset = Dataset.from_pandas(train[['text']])
def train_corp_iter():
for i in range(0, len(dataset), 1000):
yield dataset[i : i + 1000]["text"]
raw_tokenizer.train_from_iterator(train_corp_iter(), trainer=trainer)
tokenizer = PreTrainedTokenizerFast(
tokenizer_object=raw_tokenizer,
unk_token="[UNK]",
pad_token="[PAD]",
cls_token="[CLS]",
sep_token="[SEP]",
mask_token="[MASK]",
)
tokenized_texts = [tokenizer.tokenize(text) for text in df['text'].tolist()]
return tokenized_texts
bpe_train = tokenize(train)
bpe_test = tokenize(test)
def dummy(text):
return text
def vectorize(tokenized_texts):
vectorizer = TfidfVectorizer(ngram_range=(3, 5), lowercase=False, sublinear_tf=True,
analyzer='word', tokenizer=dummy, preprocessor=dummy,
token_pattern=None, strip_accents='unicode', min_df=2, max_features=5000000)
X_matrix = vectorizer.fit_transform(tokenized_texts)
return X_matrix
X_train = vectorize(bpe_train)
X_test = vectorize(bpe_test)
from scipy.sparse import save_npz, load_npz
save_npz('/data/processed_train.npz', X_train)
save_npz('/data/processed_test.npz', X_test)
X_train = load_npz('/data/processed_train.npz')
X_test = load_npz('/data/processed_test.npz')