-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmae_pretrain.py
executable file
·129 lines (100 loc) · 4.87 KB
/
mae_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import argparse
import math
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import ToTensor, Compose, Normalize
from tqdm import tqdm
from model import *
from utils import setup_seed
def load_data(split):
src_x, dst_x, y, src_dst_x = [], [], [], []
with open("data/" + split,"r") as f:
lines = f.readlines()
for line in lines:
tmp = line.strip().split("\t")
reward = float(tmp[6])
a_x_array = tmp[7:32]
a_x_array = np.array([float(x) for x in a_x_array])
src_x.append(a_x_array)
b_x_array = tmp[33:]
b_x_array = np.array([float(x) for x in b_x_array])
dst_x.append(b_x_array)
if reward > 0.0:
y.append(1)
else:
y.append(0)
ab_intimacy = float(tmp[32])
src_dst_x.append(np.array([ab_intimacy]))
src_x = np.array(src_x)
dst_x = np.array(dst_x)
y = np.array(y)
src_dst_x = np.array(src_dst_x)
src_x = torch.from_numpy(src_x).float()
dst_x = torch.from_numpy(dst_x).float()
y = torch.from_numpy(y)
src_dst_x = torch.from_numpy(src_dst_x).float()
print(src_x.shape, dst_x.shape, y.shape, src_dst_x.shape)
return src_x, dst_x, y, src_dst_x
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--batch_size', type=int, default=4096)
parser.add_argument('--max_device_batch_size', type=int, default=512)
parser.add_argument('--base_learning_rate', type=float, default=1.5e-4)
parser.add_argument('--weight_decay', type=float, default=0.05)
parser.add_argument('--mask_ratio', type=float, default=1.0/3)
parser.add_argument('--total_epoch', type=int, default=100)
parser.add_argument('--warmup_epoch', type=int, default=20)
parser.add_argument('--hidden_channels', type=int, default=256)
parser.add_argument('--model_path', type=str, default='results/edge-mae.pt')
parser.add_argument('--num_hops', type=int, default=3)
parser.add_argument('--emb_dim', type=int, default=256)
parser.add_argument('--encoder_num_layer', type=int, default=2)
parser.add_argument('--decoder_num_layer', type=int, default=1)
parser.add_argument('--num_head', type=int, default=3)
parser.add_argument('--h_dim', type=int, default=25)
parser.add_argument('--r_dim', type=int, default=1)
parser.add_argument('--t_dim', type=int, default=26)
args = parser.parse_args()
setup_seed(args.seed)
batch_size = args.batch_size
load_batch_size = min(args.max_device_batch_size, batch_size)
assert batch_size % load_batch_size == 0
steps_per_update = batch_size // load_batch_size
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)
src_x, dst_x, y, src_dst_x = load_data("unlabeled")
train_data = [(src_x[idx], dst_x[idx], y[idx], src_dst_x[idx]) for idx in range(len(src_x))]
train_dataloader = torch.utils.data.DataLoader(train_data, 2048, shuffle=True, num_workers=4)
val_data = [(src_x[idx], dst_x[idx], y[idx], src_dst_x[idx]) for idx in range(len(src_x))]
val_dataloader = torch.utils.data.DataLoader(val_data, 256, shuffle=False, num_workers=4)
#model = MAE_ViT_pretrain(mask_ratio=args.mask_ratio, num_hops=3, emb_dim=args.hidden_channels,h_dim=25,r_dim=1,t_dim=26).to(device)
model = MAE_E2E(args).to(device)
optim = torch.optim.AdamW(model.parameters(), lr=args.base_learning_rate * args.batch_size / 256, betas=(0.9, 0.95), weight_decay=args.weight_decay)
lr_func = lambda epoch: min((epoch + 1) / (args.warmup_epoch + 1e-8), 0.5 * (math.cos(epoch / args.total_epoch * math.pi) + 1))
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optim, lr_lambda=lr_func, verbose=True)
step_count = 0
optim.zero_grad()
for e in range(args.total_epoch):
model.train()
losses = []
for src_x, dst_x, y, src_dst_x in iter(train_dataloader):
step_count += 1
src_x = src_x.to(device)
dst_x = dst_x.to(device)
src_dst_x = src_dst_x.to(device)
# predicted_img, mask = model(img)
loss = model(src_x,dst_x,src_dst_x)
loss = loss / args.mask_ratio
loss.backward()
if step_count % steps_per_update == 0:
optim.step()
optim.zero_grad()
losses.append(loss.item())
lr_scheduler.step()
avg_loss = sum(losses) / len(losses)
#writer.add_scalar('mae_loss', avg_loss, global_step=e)
print(f'In epoch {e}, average traning loss is {avg_loss}.')
''' save model '''
torch.save(model, args.model_path)