-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_graph.py
227 lines (198 loc) · 8.85 KB
/
train_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# This file was taken from the following repository:
# https://github.com/EnyanDai/FairGNN
import pickle
import time
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
from utils import load_data, accuracy, load_pokec
from models.graph import FairGNN
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=True,
help='Disables CUDA training.')
parser.add_argument('--fastmode', action='store_true', default=False,
help='Validate during training pass.')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--epochs', type=int, default=500,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.001,
help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=1e-5,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=128,
help='Number of hidden units of the sensitive attribute estimator')
parser.add_argument('--dropout', type=float, default=.5,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--alpha', type=float, default=4,
help='The hyperparameter of alpha')
parser.add_argument('--beta', type=float, default=0.01,
help='The hyperparameter of beta')
parser.add_argument('--model', type=str, default="GAT",
help='the type of model GCN/GAT')
parser.add_argument('--dataset', type=str, default='pokec_z',
choices=['pokec_z', 'pokec_n', 'nba'])
parser.add_argument('--num-hidden', type=int, default=64,
help='Number of hidden units of classifier.')
parser.add_argument("--num-heads", type=int, default=1,
help="number of hidden attention heads")
parser.add_argument("--num-out-heads", type=int, default=1,
help="number of output attention heads")
parser.add_argument("--num-layers", type=int, default=1,
help="number of hidden layers")
parser.add_argument("--residual", action="store_true", default=False,
help="use residual connection")
parser.add_argument("--attn-drop", type=float, default=.0,
help="attention dropout")
parser.add_argument('--negative-slope', type=float, default=0.2,
help="the negative slope of leaky relu")
parser.add_argument('--acc', type=float, default=0,
help='the selected FairGNN accuracy on val would be at least this high')
parser.add_argument('--roc', type=float, default=0,
help='the selected FairGNN ROC score on val would be at least this high')
parser.add_argument('--sens_number', type=int, default=200,
help="the number of sensitive attributes")
parser.add_argument('--label_number', type=int, default=500,
help="the number of labels")
args = parser.parse_known_args()[0]
args.cuda = False
print(args)
# %%
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# if args.cuda:
# torch.cuda.manual_seed(args.seed)
# Load data
print(args.dataset)
if args.dataset != 'nba':
if args.dataset == 'pokec_z':
dataset = 'region_job'
else:
dataset = 'region_job_2'
sens_attr = "region"
predict_attr = "I_am_working_in_field"
label_number = args.label_number
sens_number = args.sens_number
seed = 20
path = "../dataset/pokec/"
test_idx = False
else:
dataset = 'nba'
sens_attr = "country"
predict_attr = "SALARY"
label_number = 100
sens_number = 50
seed = 20
path = "../dataset/NBA"
test_idx = True
print(dataset)
adj, features, labels, idx_train, idx_val, idx_test, sens, idx_sens_train = load_pokec(dataset,
sens_attr,
predict_attr,
path=path,
label_number=label_number,
sens_number=sens_number,
seed=seed, test_idx=test_idx)
# %%
import dgl
from utils import feature_norm
G = dgl.DGLGraph()
G = dgl.from_scipy(adj)
if dataset == 'nba':
features = feature_norm(features)
def fair_metric(output, idx):
val_y = labels[idx].cpu().numpy()
idx_s0 = sens.cpu().numpy()[idx.cpu().numpy()] == 0
idx_s1 = sens.cpu().numpy()[idx.cpu().numpy()] == 1
idx_s0_y1 = np.bitwise_and(idx_s0, val_y == 1)
idx_s1_y1 = np.bitwise_and(idx_s1, val_y == 1)
pred_y = (output[idx].squeeze() > 0).type_as(labels).cpu().numpy()
parity = abs(sum(pred_y[idx_s0]) / sum(idx_s0) - sum(pred_y[idx_s1]) / sum(idx_s1))
equality = abs(sum(pred_y[idx_s0_y1]) / sum(idx_s0_y1) - sum(pred_y[idx_s1_y1]) / sum(idx_s1_y1))
return parity, equality
# %%
labels[labels > 1] = 1
if sens_attr:
sens[sens > 0] = 1
# Model and optimizer
model = FairGNN(nfeat=features.shape[1], args=args)
# model.estimator.load_state_dict(torch.load("./checkpoint/GCN_sens_{}_ns_{}".format(dataset,sens_number)))
# if args.cuda:
# model.cuda()
# features = features.cuda()
# labels = labels.cuda()
# idx_train = idx_train.cuda()
# idx_val = idx_val.cuda()
# idx_test = idx_test.cuda()
# sens = sens.cuda()
# idx_sens_train = idx_sens_train.cuda()
from sklearn.metrics import accuracy_score, roc_auc_score, recall_score, f1_score
# Train model
t_total = time.time()
best_result = {}
best_fair = 100
list_accs = []
list_parity = []
list_equality = []
list_roc = []
with tqdm(range(0, args.epochs)) as tepoch:
for epoch in tepoch:
tepoch.set_description(f"Epoch {epoch + 1}")
t = time.time()
model.train()
model.optimize(G, features, labels, idx_train, sens, idx_sens_train)
cls_loss = model.cls_loss
adv_loss = model.adv_loss
model.eval()
output, s = model(G, features)
acc_val = accuracy(output[idx_val], labels[idx_val])
roc_val = roc_auc_score(labels[idx_val].cpu().numpy(), output[idx_val].detach().cpu().numpy())
# acc_sens = accuracy(s[idx_test], sens[idx_test])
parity_val, equality_val = fair_metric(output, idx_val)
acc_test = accuracy(output[idx_test], labels[idx_test])
roc_test = roc_auc_score(labels[idx_test].cpu().numpy(), output[idx_test].detach().cpu().numpy())
parity, equality = fair_metric(output, idx_test)
list_accs.append(acc_test.item())
list_parity.append(parity)
list_equality.append(equality)
list_roc.append(roc_test)
tepoch.set_postfix(cls_loss=cls_loss.item(), adv_loss=adv_loss.item(), acc_test=acc_test.item(),
roc_test=roc_test,
parity=parity, equality=equality)
if acc_val > args.acc and roc_val > args.roc:
if best_fair > parity_val + equality_val:
best_fair = parity_val + equality_val
best_result['acc'] = acc_test.item()
best_result['roc'] = roc_test
best_result['parity'] = parity
best_result['equality'] = equality
print("=================================")
print('Epoch: {:04d}'.format(epoch + 1),
'cls: {:.4f}'.format(cls_loss.item()),
'adv: {:.4f}'.format(adv_loss.item()),
'acc_val: {:.4f}'.format(acc_val.item()),
"roc_val: {:.4f}".format(roc_val),
"parity_val: {:.4f}".format(parity_val),
"equality: {:.4f}".format(equality_val))
print("Test:",
"accuracy: {:.4f}".format(acc_test.item()),
"roc: {:.4f}".format(roc_test),
"parity: {:.4f}".format(parity),
"equality: {:.4f}".format(equality))
print("Optimization Finished!")
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))
print('============performace on test set=============')
if len(best_result) > 0:
print("Test:",
"accuracy: {:.4f}".format(best_result['acc']),
"roc: {:.4f}".format(best_result['roc']),
"parity: {:.4f}".format(best_result['parity']),
"equality: {:.4f}".format(best_result['equality']))
else:
print("Please set smaller acc/roc thresholds")
performance = {"acc": list_accs, "parity": list_parity, "equality": list_equality, "roc":list_roc}
with open("pokec_z_dataset_graph3.pkl", "wb") as fp:
pickle.dump(performance, fp)