-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_tabular.py
355 lines (294 loc) · 12.6 KB
/
train_tabular.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import argparse
import math
import typing
from data_loading.load_health import pre_process_and_load_health
from models.tabular import AttributeClassifierAblation
import torch
import pickle
import random
import numpy as np
import pandas as pd
import time
from sklearn.model_selection import train_test_split
from torch.optim.lr_scheduler import ExponentialLR
from sklearn.preprocessing import MinMaxScaler
from metrics import demographic_parity_difference_soft
from data_loading.load_adult import pre_process_and_load_adult
from fairlearn.metrics import equalized_odds_difference
from tqdm import tqdm
import torch
from torch import nn
from torch.nn import functional as F
class ConstraintLoss(nn.Module):
def __init__(self, n_class=2, alpha=1, p_norm=2):
super(ConstraintLoss, self).__init__()
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.alpha = alpha
self.p_norm = p_norm
self.n_class = n_class
self.n_constraints = 2
self.dim_condition = self.n_class + 1
self.M = torch.zeros((self.n_constraints, self.dim_condition))
self.c = torch.zeros(self.n_constraints)
def mu_f(self, X=None, y=None, sensitive=None):
return torch.zeros(self.n_constraints)
def forward(self, X, out, sensitive, y=None):
sensitive = sensitive.reshape(out.shape)
if isinstance(y, torch.Tensor):
y = y.view(out.shape)
out = torch.sigmoid(out)
mu = self.mu_f(X=X, out=out, sensitive=sensitive, y=y)
gap_constraint = F.relu(
torch.mv(self.M.to(self.device), mu.to(self.device)) - self.c.to(self.device)
)
if self.p_norm == 2:
cons = self.alpha * torch.mean(torch.pow(gap_constraint, 2))
else:
cons = self.alpha * torch.dot(gap_constraint.detach(), gap_constraint)
return cons
class DemographicParityLoss(ConstraintLoss):
def __init__(self, sensitive_classes=[0, 1], alpha=1, p_norm=2):
"""loss of demograpfhic parity
Args:
sensitive_classes (list, optional): list of unique values of sensitive attribute. Defaults to [0, 1].
alpha (int, optional): [description]. Defaults to 1.
p_norm (int, optional): [description]. Defaults to 2.
"""
self.sensitive_classes = sensitive_classes
self.n_class = len(sensitive_classes)
super(DemographicParityLoss, self).__init__(
n_class=self.n_class, alpha=alpha, p_norm=p_norm
)
self.n_constraints = 2 * self.n_class
self.dim_condition = self.n_class + 1
self.M = torch.zeros((self.n_constraints, self.dim_condition))
for i in range(self.n_constraints):
j = i % 2
if j == 0:
self.M[i, j] = 1.0
self.M[i, -1] = -1.0
else:
self.M[i, j - 1] = -1.0
self.M[i, -1] = 1.0
self.c = torch.zeros(self.n_constraints)
def mu_f(self, X, out, sensitive, y=None):
expected_values_list = []
for v in self.sensitive_classes:
idx_true = sensitive == v # torch.bool
expected_values_list.append(out[idx_true].mean())
expected_values_list.append(out.mean())
return torch.stack(expected_values_list)
def forward(self, X, out, sensitive, y=None):
return super(DemographicParityLoss, self).forward(X, out, sensitive)
def domination(x1, x2):
# determin if x1 dominate x2
# breakpoint()
# want greater acc in 0 dim and lower dp in 1 dim
if x1[0] > x2[0] and x1[1] < x2[1]:
return True
if x1[0] >= x2[0] and x1[1] < x2[1]:
return True
if x1[0] > x2[0] and x1[1] <= x2[1]:
return True
return False
def get_pareto_front(arr, x_dominates_y: typing.Callable = domination):
pareto_front = []
for i in arr:
for j in arr:
# print(i,j, x_dominates_y(j, i))
# if j dominate i, we don't want i
if x_dominates_y(j, i):
# print("i is dominated by j")
break
else:
pareto_front.append(i)
return pareto_front
def fwd_pass(x, y_l, s, criterion_dp, criterion_acc, optimizer_dp, optimizer_acc, model):
model.zero_grad()
x = torch.Tensor(x).to(torch.float)
y_l = torch.Tensor(y_l).view(-1, 1).to(torch.float)
y_l = y_l.to(device)
if optimizer_dp is not None:
out = model(x.to(device))
out = out.to(torch.float)
loss_dp = criterion_dp(y_l, out, s)
loss_dp.backward()
optimizer_dp.step()
out = model(x.to(device))
out = out.to(torch.float)
loss_acc = criterion_acc(out, y_l)
loss_dp = criterion_dp(y_l, out, s)
if optimizer_dp is None:
try:
dp_order = math.floor(math.log(loss_dp, 10))
except ValueError:
dp_order = 0
if dp_order == 0:
dp_order = 0.0001
# loss_dp_scale = 10 ** (abs((dp_order/math.floor(math.log(loss_acc, 10)))) - 1)
# loss_dp = loss_dp_scale * loss_dp
loss_acc = loss_acc + loss_dp
loss_acc.backward()
optimizer_acc.step()
out = model(x.to(device))
matches = [torch.round(i) == torch.round(j) for i, j in zip(out, y_l)]
acc = matches.count(True) / len(matches)
return acc, loss_acc, loss_dp.detach().numpy(), out
def sdp(x, y):
male_and_high = [1 if (i == 1 and torch.round(j) == 1) else 0 for i, j in zip(x[:, 9], y)].count(1)
male = [i for i in x[:, 9]].count(1)
female_and_high = [1 if (i == 0 and torch.round(j) == 1) else 0 for i, j in zip(x[:, 9], y)].count(1)
female = [j for j in x[:, 9]].count(0)
p_male_high = male_and_high / male
p_female_high = female_and_high / female
return abs(p_male_high - p_female_high)
def test_func(model_f, y_label, X_test_f, s):
y_pred = []
y_label = torch.Tensor(y_label)
print("Testing:")
print("-------------------")
with tqdm(range(0, len(X_test_f), 100)) as tepoch:
for i in tepoch:
with torch.no_grad():
x = torch.Tensor(X_test_f[i: i + 100]).to(device)
y_pred.append(model_f(x).cpu())
y_pred = torch.cat(y_pred, dim=0)
matches = [torch.round(i) == torch.round(j) for i, j in zip(y_label, y_pred)]
acc = matches.count(True) / len(matches)
return acc, demographic_parity_difference_soft(y_label, s, y_pred)
acc_dp = {}
class FairLossFunc(torch.nn.Module):
def __init__(self, eta, protected):
super(FairLossFunc, self).__init__()
self.protected = protected
self.eta = eta
def forward(self, y_label, y_pred, protected):
losses_max = torch.Tensor([0])
for i in self.protected:
for j in self.protected:
index_c1 = protected == i
index_c2 = protected == j
p_1 = torch.mean(y_pred[index_c1])
p_2 = torch.mean(y_pred[index_c2])
l = ((p_1 - p_2) ** 2)
if losses_max.item() < l.item():
losses_max = l
return losses_max
losses_step = []
def train_model(eta, mode, data, f_layers, a_layers, f_position):
MODEL_NAME = f"model-{int(time.time())}"
if data == 'Adult':
X, y, s = pre_process_and_load_adult(mode="onehot", train=True)
X_test, y_test, s_test = pre_process_and_load_adult(mode="onehot", train=False)
elif data == 'Health':
X, y, s, X_test, y_test, s_test = pre_process_and_load_health()
# elif data == 'Compass':
# X, y, X_test, y_test = pre_process_and_load_compass()
else:
raise NotImplementedError()
model = AttributeClassifierAblation(dataset=data, fairness_layer_mode=mode, fairness_layers=f_layers,
accuracy_layers=a_layers, fairness_layers_position=f_position)
model.to(device)
optimizer_acc = torch.optim.Adam(model.get_accuracy_parameters(), lr=alr)
if mode != "reg":
optimizer_dp = torch.optim.Adam(model.get_fairness_parameters(), lr=flr)
scheduler_dp = ExponentialLR(optimizer_dp, gamma=0.9)
else:
optimizer_dp = None
scheduler_dp = None
criterion_acc = torch.nn.BCELoss()
scheduler_acc = ExponentialLR(optimizer_acc, gamma=0.5)
s_c = [0, 1, 2, 3, 4, 5, 6, 7, 8] if data == 'Health' else [0, 1]
criterion_dp = DemographicParityLoss(sensitive_classes=s_c, alpha=eta)
test_acc = []
test_dp = []
test_eo = []
times = []
with open("model.log", "a") as f:
for epoch in range(EPOCHS):
a1 = time.time()
losses = []
accs = []
losses_dp = []
with tqdm(range(0, len(X), BATCH_SIZE)) as tepoch:
for i in tepoch:
tepoch.set_description(f"Eta {eta}, Epoch {epoch + 1}")
batch_X = X[i: i + BATCH_SIZE]
batch_y = y[i: i + BATCH_SIZE]
batch_s = s[i: i + BATCH_SIZE]
acc, loss, loss_dp, _ = fwd_pass(batch_X, batch_y, batch_s, criterion_dp, criterion_acc, optimizer_dp,
optimizer_acc, model)
losses.append(loss.item())
losses_dp.append(loss_dp)
accs.append(acc)
acc_mean = np.array(accs).mean()
loss_mean = np.array(losses).mean()
loss_dp_mean = np.array(losses_dp).mean()
tepoch.set_postfix(loss=loss_mean, accuracy=100. * acc_mean, loss_dp=loss_dp_mean)
if i == 0:
acc, sdp = test_func(model, y_test, X_test, s_test)
test_acc.append(acc)
test_dp.append(sdp[0])
print(f'ACC: {acc}')
print(f'SDP: {sdp}')
f.write(
f"{MODEL_NAME},{epoch},{round(float(acc_mean), 2)},{round(float(loss_mean), 4)},{acc},{sdp}\n")
if (epoch + 1) % 50 == 0:
scheduler_acc.step()
if mode != "reg":
scheduler_dp.step()
dt = time.strftime("%Y_%m_%d-%H_%M_%S")
losses_step.append(np.array(losses).mean())
a2 = time.time()
if epoch > 10:
times.append(a2 - a1)
acc_dp[eta] = (test_acc, test_dp, test_eo)
for item in acc_dp.keys():
a = [(i, j) for i, j in zip(acc_dp[item][0], acc_dp[item][1])]
a.sort(key=lambda x: -x[0])
acc_dp[item] = a
pareto_set = [[] for item in acc_dp.keys()]
for idx, item in enumerate(acc_dp.keys()):
pareto_set[idx].append(get_pareto_front(acc_dp[item]))
print(pareto_set)
# with open(f'acc_dps_{data}_{len(fairness_layers)}_{mode}.pkl', 'wb') as fp:
# pickle.dump(acc_dp, fp)
print(np.mean(times))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--mode", help='mode of the fairness layer', default='reg')
parser.add_argument("-e", "--eta", help="eta", default=10000)
parser.add_argument("-d", "--data", help="dataset name", default='Adult')
parser.add_argument("-fl", "--fairness_layers", nargs="+", help="Fairness Layers")
parser.add_argument("-al", "--acc_layers", nargs="+", help="Accuracy Layers")
parser.add_argument("-fp", "--fairness_position", help="fairness layer position", default=2)
parser.add_argument("-dv", "--device", default="cpu")
parser.add_argument("-ep", "--epochs", default=200)
parser.add_argument("-flr", "--fairness_learning_rate", default=1e-5)
parser.add_argument("-nlr", "--network_learning_rate", default=1e-3)
parser.add_argument("-bs", "--batch_size", default=200)
args = parser.parse_args()
alr = args.network_learning_rate
flr = args.fairness_learning_rate
BATCH_SIZE = int(args.batch_size)
EPOCHS = int(args.epochs)
if args.device == "mps":
assert torch.backends.mps.is_available()
elif args.device != "cpu":
assert torch.cuda.is_available()
device = torch.device(args.device)
if args.data == "Adult":
acc_layers = (101, 101, 101, 101, 1)
fairness_layers = (101, 101)
protected = 9
elif args.data == "Health":
acc_layers = (125, 125, 125, 125, 125, 1)
fairness_layers = (125, 125)
protected = 123
else:
raise NotImplementedError()
if args.acc_layers is not None:
acc_layers = tuple(map(lambda x: int(x), args.acc_layers))
if args.fairness_layers is not None:
fairness_layers = tuple(map(lambda x: int(x), args.fairness_layers))
train_model(args.eta, args.mode, args.data, fairness_layers, acc_layers, int(args.fairness_position))