-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
156 lines (120 loc) · 5.06 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
import scipy.sparse as sp
import torch
import torch.nn.functional as F
import dgl
import time
from sklearn.neighbors import kneighbors_graph
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import normalize
EOS = 1e-10
def split_batch(init_list, batch_size):
groups = zip(*(iter(init_list),) * batch_size)
end_list = [list(i) for i in groups]
count = len(init_list) % batch_size
end_list.append(init_list[-count:]) if count != 0 else end_list
return end_list
def get_feat_mask(features, mask_rate):
feat_node = features.shape[1]
mask = torch.zeros(features.shape)
samples = np.random.choice(feat_node, size=int(feat_node * mask_rate), replace=False)
mask[:, samples] = 1
if torch.cuda.is_available():
mask = mask.cuda()
return mask, samples
def normalize_adj(adj, mode, sparse=False):
if not sparse:
if mode == "sym":
inv_sqrt_degree = 1. / (torch.sqrt(adj.sum(dim=1, keepdim=False)) + EOS)
return inv_sqrt_degree[:, None] * adj * inv_sqrt_degree[None, :]
elif mode == "row":
inv_degree = 1. / (adj.sum(dim=1, keepdim=False) + EOS)
return inv_degree[:, None] * adj
else:
exit("wrong norm mode")
else:
adj = adj.coalesce()
if mode == "sym":
inv_sqrt_degree = 1. / (torch.sqrt(torch.sparse.sum(adj, dim=1).values()))
D_value = inv_sqrt_degree[adj.indices()[0]] * inv_sqrt_degree[adj.indices()[1]]
elif mode == "row":
inv_degree = 1. / (torch.sparse.sum(adj, dim=1).values() + EOS)
D_value = inv_degree[adj.indices()[0]]
else:
exit("wrong norm mode")
new_values = adj.values() * D_value
return torch.sparse.FloatTensor(adj.indices(), new_values, adj.size())
def get_adj_from_edges(edges, weights, nnodes):
adj = torch.zeros(nnodes, nnodes).cuda()
adj[edges[0], edges[1]] = weights
return adj
def augmentation(features_1, adj_1, features_2, adj_2, args, training):
# view 1
mask_1, _ = get_feat_mask(features_1, args.maskfeat_rate_1)
features_1 = features_1 * (1 - mask_1)
if not args.sparse:
adj_1 = F.dropout(adj_1, p=args.dropedge_rate_1, training=training)
else:
adj_1.edata['w'] = F.dropout(adj_1.edata['w'], p=args.dropedge_rate_1, training=training)
# # view 2
mask_2, _ = get_feat_mask(features_1, args.maskfeat_rate_2)
features_2 = features_2 * (1 - mask_2)
if not args.sparse:
adj_2 = F.dropout(adj_2, p=args.dropedge_rate_2, training=training)
else:
adj_2.edata['w'] = F.dropout(adj_2.edata['w'], p=args.dropedge_rate_2, training=training)
return features_1, adj_1, features_2, adj_2
def generate_random_node_pairs(nnodes, nedges, backup=300):
rand_edges = np.random.choice(nnodes, size=(nedges + backup) * 2, replace=True)
rand_edges = rand_edges.reshape((2, nedges + backup))
rand_edges = torch.from_numpy(rand_edges)
rand_edges = rand_edges[:, rand_edges[0,:] != rand_edges[1,:]]
rand_edges = rand_edges[:, 0: nedges]
return rand_edges.cuda()
def eval_debug_mode(embedding, labels, train_mask, val_mask, test_mask):
t1 = time.time()
X = embedding.detach().cpu().numpy()
Y = labels.detach().cpu().numpy()
X = normalize(X, norm='l2')
nb_split = train_mask.shape[1]
accs = []
for split in range(nb_split):
X_train = X[train_mask.cpu()[:, split]]
X_test = X[test_mask.cpu()[:, split]]
y_train = Y[train_mask.cpu()[:, split]]
y_test = Y[test_mask.cpu()[:, split]]
logreg = LogisticRegression(solver='liblinear')
c = 2.0 ** np.arange(-10, 10)
clf = GridSearchCV(estimator=OneVsRestClassifier(logreg),
param_grid=dict(estimator__C=c), n_jobs=8, cv=5,
verbose=0)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
acc = accuracy_score(y_test, y_pred)
accs.append(acc)
print('eval time:{:.4f}s'.format(time.time() - t1))
return accs
def eval_test_mode(embedding, labels, train_mask, val_mask, test_mask):
X = embedding.detach().cpu().numpy()
Y = labels.detach().cpu().numpy()
X = normalize(X, norm='l2')
X_train = X[train_mask.cpu()]
X_val = X[val_mask.cpu()]
X_test = X[test_mask.cpu()]
y_train = Y[train_mask.cpu()]
y_val = Y[val_mask.cpu()]
y_test = Y[test_mask.cpu()]
logreg = LogisticRegression(solver='liblinear')
c = 2.0 ** np.arange(-10, 10)
clf = GridSearchCV(estimator=OneVsRestClassifier(logreg),
param_grid=dict(estimator__C=c), n_jobs=8, cv=5,
verbose=0)
clf.fit(X_train, y_train)
y_pred_test = clf.predict(X_test)
acc_test = accuracy_score(y_test, y_pred_test)
y_pred_val = clf.predict(X_val)
acc_val = accuracy_score(y_val, y_pred_val)
return acc_test * 100, acc_val * 100