-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathutils.py
38 lines (32 loc) · 1.08 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
from torch.nn import init
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
elif classname.find('Linear') != -1:
size = m.weight.size()
m.weight.data.normal_(0.0, 0.1)
m.bias.data.fill_(0)
def weights_init_xavier(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.xavier_normal(m.weight.data, gain=0.02)
elif classname.find('Linear') != -1:
init.xavier_normal(m.weight.data, gain=0.02)
elif classname.find('BatchNorm2d') != -1:
init.normal(m.weight.data, 1.0, 0.02)
init.constant(m.bias.data, 0.0)
def lr_scheduler(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return optimizer
def exp_lr_scheduler(optimizer, epoch, init_lr, lrd, nevals):
"""Implements torch learning reate decay with SGD"""
lr = init_lr / (1 + nevals*lrd)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return optimizer