-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathginet.py
124 lines (95 loc) · 4.18 KB
/
ginet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Linear, LayerNorm, ReLU
from torch_scatter import scatter
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops
from torch_geometric.nn import global_add_pool, global_mean_pool, global_max_pool
import rdkit
from rdkit import Chem
from rdkit.Chem.rdchem import HybridizationType as HT
from rdkit.Chem.rdchem import BondType as BT
from rdkit.Chem.rdchem import BondStereo
from rdkit.Chem import AllChem
num_atom_type = 119 # including the extra mask tokens
num_chirality_tag = 3
num_bond_type = 5 # including aromatic and self-loop edge
num_bond_direction = 3
class GINEConv(MessagePassing):
def __init__(self, emb_dim, aggr="add"):
super(GINEConv, self).__init__()
self.mlp = nn.Sequential(
nn.Linear(emb_dim, 2*emb_dim),
nn.ReLU(),
nn.Linear(2*emb_dim, emb_dim)
)
self.edge_embedding1 = nn.Embedding(num_bond_type, emb_dim)
self.edge_embedding2 = nn.Embedding(num_bond_direction, emb_dim)
nn.init.xavier_uniform_(self.edge_embedding1.weight.data)
nn.init.xavier_uniform_(self.edge_embedding2.weight.data)
self.aggr = aggr
def forward(self, x, edge_index, edge_attr):
# add self loops in the edge space
edge_index = add_self_loops(edge_index, num_nodes=x.size(0))[0]
# add features corresponding to self-loop edges.
self_loop_attr = torch.zeros(x.size(0), 2)
self_loop_attr[:,0] = 4 #bond type for self-loop edge
self_loop_attr = self_loop_attr.to(edge_attr.device).to(edge_attr.dtype)
edge_attr = torch.cat((edge_attr, self_loop_attr), dim=0)
edge_embeddings = self.edge_embedding1(edge_attr[:,0]) + self.edge_embedding2(edge_attr[:,1])
return self.propagate(edge_index, x=x, edge_attr=edge_embeddings)
def message(self, x_j, edge_attr):
return x_j + edge_attr
def update(self, aggr_out):
return self.mlp(aggr_out)
class GINet(nn.Module):
def __init__(self, num_layer=5, emb_dim=300, feat_dim=256, dropout=0, pool='mean'):
super(GINet, self).__init__()
self.num_layer = num_layer
self.emb_dim = emb_dim
self.feat_dim = feat_dim
self.dropout = dropout
self.x_embedding1 = nn.Embedding(num_atom_type, emb_dim)
self.x_embedding2 = nn.Embedding(num_chirality_tag, emb_dim)
nn.init.xavier_uniform_(self.x_embedding1.weight.data)
nn.init.xavier_uniform_(self.x_embedding2.weight.data)
# List of MLPs
self.gnns = nn.ModuleList()
for layer in range(num_layer):
self.gnns.append(GINEConv(emb_dim, aggr="add"))
# List of batchnorms
self.batch_norms = nn.ModuleList()
for layer in range(num_layer):
self.batch_norms.append(nn.BatchNorm1d(emb_dim))
if pool == 'mean':
self.pool = global_mean_pool
elif pool == 'max':
self.pool = global_max_pool
elif pool == 'add':
self.pool = global_add_pool
self.feat_lin = nn.Linear(self.emb_dim, self.feat_dim)
self.out_lin = nn.Sequential(
nn.Linear(self.feat_dim, self.feat_dim),
nn.ReLU(inplace=True),
nn.Linear(self.feat_dim, self.feat_dim//2)
)
def forward(self, data):
h = self.x_embedding1(data.x[:,0]) + self.x_embedding2(data.x[:,1])
for layer in range(self.num_layer):
h = self.gnns[layer](h, data.edge_index, data.edge_attr)
h = self.batch_norms[layer](h)
if layer == self.num_layer - 1:
h = F.dropout(h, self.dropout, training=self.training)
else:
h = F.dropout(F.relu(h), self.dropout, training=self.training)
h_global = self.pool(h, data.batch)
h_global = self.feat_lin(h_global)
out_global = self.out_lin(h_global)
h_sub = self.pool(h, data.motif_batch)[1:,:]
h_sub = self.feat_lin(h_sub)
out_sub = self.out_lin(h_sub)
return h_global, out_global, out_sub
if __name__ == "__main__":
model = GINConv()
print(model)