-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathginet_finetune.py
145 lines (117 loc) · 5.1 KB
/
ginet_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Linear, LayerNorm, ReLU
from torch_scatter import scatter
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree, softmax
from torch_geometric.nn import global_add_pool, global_mean_pool, global_max_pool
num_atom_type = 119 # including the extra mask tokens
num_chirality_tag = 4
num_bond_type = 5 # including aromatic and self-loop edge
num_bond_direction = 3
class GINEConv(MessagePassing):
def __init__(self, embed_dim, aggr="add"):
super(GINEConv, self).__init__()
self.mlp = nn.Sequential(
nn.Linear(embed_dim, 2*embed_dim),
nn.ReLU(),
nn.Linear(2*embed_dim, embed_dim)
)
self.edge_embedding1 = nn.Embedding(num_bond_type, embed_dim)
self.edge_embedding2 = nn.Embedding(num_bond_direction, embed_dim)
nn.init.xavier_uniform_(self.edge_embedding1.weight.data)
nn.init.xavier_uniform_(self.edge_embedding2.weight.data)
self.aggr = aggr
def forward(self, x, edge_index, edge_attr):
# add self loops in the edge space
edge_index = add_self_loops(edge_index, num_nodes=x.size(0))[0]
# add features corresponding to self-loop edges.
self_loop_attr = torch.zeros(x.size(0), 2)
self_loop_attr[:,0] = 4 #bond type for self-loop edge
self_loop_attr = self_loop_attr.to(edge_attr.device).to(edge_attr.dtype)
edge_attr = torch.cat((edge_attr, self_loop_attr), dim=0)
edge_embeddings = self.edge_embedding1(edge_attr[:,0]) + self.edge_embedding2(edge_attr[:,1])
return self.propagate(edge_index, x=x, edge_attr=edge_embeddings)
def message(self, x_j, edge_attr):
return x_j + edge_attr
def update(self, aggr_out):
return self.mlp(aggr_out)
class GINet(nn.Module):
def __init__(self, task='classification', num_layer=5, embed_dim=256, dropout=0, pooling='mean'):
super(GINet, self).__init__()
self.task = task
self.num_layer = num_layer
self.embed_dim = embed_dim
self.dropout = dropout
self.x_embedding1 = nn.Embedding(num_atom_type, embed_dim)
self.x_embedding2 = nn.Embedding(num_chirality_tag, embed_dim)
nn.init.xavier_uniform_(self.x_embedding1.weight.data)
nn.init.xavier_uniform_(self.x_embedding2.weight.data)
# List of MLPs
self.gnns = nn.ModuleList()
for layer in range(num_layer):
self.gnns.append(GINEConv(embed_dim, aggr="add"))
# List of batchnorms
self.batch_norms = nn.ModuleList()
for layer in range(num_layer):
self.batch_norms.append(nn.BatchNorm1d(embed_dim))
if pooling == 'mean':
self.pool = global_mean_pool
elif pooling == 'max':
self.pool = global_max_pool
elif pooling == 'add':
self.pool = global_add_pool
else:
raise ValueError('Pooling operation not defined!')
# projection head
self.proj_head = nn.Sequential(
nn.Linear(embed_dim, embed_dim, bias=False),
nn.BatchNorm1d(embed_dim),
nn.ReLU(inplace=True), # first layer
nn.Linear(embed_dim, embed_dim, bias=False),
nn.BatchNorm1d(embed_dim),
nn.ReLU(inplace=True), # second layer
nn.Linear(embed_dim, embed_dim, bias=False),
nn.BatchNorm1d(embed_dim)
)
# fine-tune prediction layers
if self.task == 'classification':
self.output_layers = nn.Sequential(
nn.Linear(embed_dim, embed_dim//2),
nn.Softplus(),
nn.Linear(embed_dim//2, 2)
)
elif self.task == 'regression':
self.output_layers = nn.Sequential(
nn.Linear(embed_dim, embed_dim//2),
nn.Softplus(),
nn.Linear(embed_dim//2, 1)
)
else:
raise ValueError('Undefined task type!')
def forward(self, data):
h = self.x_embedding1(data.x[:,0]) + self.x_embedding2(data.x[:,1])
for layer in range(self.num_layer):
h = self.gnns[layer](h, data.edge_index, data.edge_attr)
h = self.batch_norms[layer](h)
if layer == self.num_layer:
h = F.dropout(h, self.dropout, training=self.training)
else:
h = F.dropout(F.relu(h), self.dropout, training=self.training)
if self.pool == None:
h = h[data.pool_mask]
else:
h = self.pool(h, data.batch)
h = self.proj_head(h)
return self.output_layers(h)
def load_my_state_dict(self, state_dict):
own_state = self.state_dict()
for name, param in state_dict.items():
if name not in own_state:
print('NOT LOADED:', name)
continue
if isinstance(param, nn.parameter.Parameter):
# backwards compatibility for serialized parameters
param = param.data
own_state[name].copy_(param)