-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain_InceptionTime.py
172 lines (147 loc) · 5.33 KB
/
Train_InceptionTime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import matplotlib.pyplot as plt
import pandas as pd
import os
from ModelLoader import *
model_name = "InceptionTime"
ext = "TS"
# Model parameters
input_size = 10001 # number of features/columns
num_blocks = 6 # Number of InceptionTime blocks
output_size = 9 # labels/target variables
batch_Size = 32
num_epochs = 200
learning_Rate = 0.01
# Define InceptionTime Model
model = InceptionTime(input_size, output_size, num_blocks)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print(f"Using device: {device}")
criterion = nn.CrossEntropyLoss()
#optimizer = optim.Adam(model.parameters(), lr=learning_Rate) # Recommended optimizer for InceptionTime
# Learning rate scheduler
# Modified optimizer with weight decay
optimizer = torch.optim.AdamW(
model.parameters(),
lr=learning_Rate,
weight_decay=0.001
)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode='min',
factor=0.1,
patience=10,
min_lr=1e-6
)
# Paths to training and testing data
train_csv_path = r"C:\train.csv"
test_csv_path = r"C:\test.csv"
train_dataset = CustomDataset(train_csv_path)
test_dataset = CustomDataset(test_csv_path)
train_data_loader = DataLoader(train_dataset, batch_size=batch_Size, shuffle=True)
test_data_loader = DataLoader(test_dataset, batch_size=batch_Size, shuffle=False)
# Training loop
train_loss_values = []
test_loss_values = []
train_accuracy_values = []
test_accuracy_values = []
for epoch in range(num_epochs):
# Training phase
model.train()
epoch_train_loss = 0.0
correct_train = 0
total_train = 0
for inputs, labels in train_data_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
epoch_train_loss += loss.item()
_, predicted_train = torch.max(outputs.data, 1)
total_train += labels.size(0)
correct_train += (predicted_train == labels).sum().item()
epoch_train_loss /= len(train_data_loader)
train_loss_values.append(epoch_train_loss)
train_accuracy = 100 * correct_train / total_train
train_accuracy_values.append(train_accuracy)
# Testing phase
model.eval()
epoch_test_loss = 0.0
correct_test = 0
total_test = 0
with torch.no_grad():
for inputs, labels in test_data_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
epoch_test_loss += loss.item()
_, predicted_test = torch.max(outputs.data, 1)
total_test += labels.size(0)
correct_test += (predicted_test == labels).sum().item()
epoch_test_loss /= len(test_data_loader)
test_loss_values.append(epoch_test_loss)
test_accuracy = 100 * correct_test / total_test
test_accuracy_values.append(test_accuracy)
scheduler.step(epoch_test_loss)
if (epoch + 1) % 5 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], '
f'Train Loss: {epoch_train_loss:.4f}, '
f'Test Loss: {epoch_test_loss:.4f}, '
f'Train Accuracy: {train_accuracy:.2f}%, '
f'Test Accuracy: {test_accuracy:.2f}%')
# Save the model, training logs, and plots
output_folder1 = r"C:\ML\Models"
output_folder2 = r"C:\ML\CSV"
output_folder3 = r"C:\ML\Plots"
os.makedirs(output_folder1, exist_ok=True)
os.makedirs(output_folder2, exist_ok=True)
os.makedirs(output_folder3, exist_ok=True)
model_path = os.path.join(output_folder1, f"{model_name}_{ext}.pth")
torch.save({
'model_state_dict': model.state_dict(),
'hyperparameters': {
'input_size': input_size,
'num_blocks': num_blocks,
'num_epochs': num_epochs,
'output_size': output_size,
'learning_rate': learning_Rate,
'batch_size': batch_Size,
}
}, model_path)
print(f"Model saved at {model_path}")
train_info = {'train_loss': train_loss_values,
'train_accuracy': train_accuracy_values,
'test_loss': test_loss_values,
'test_accuracy': test_accuracy_values}
csv_path = os.path.join(output_folder2, f"{model_name}_{ext}.csv")
train_info_df = pd.DataFrame(train_info)
train_info_df.to_csv(csv_path, index=False)
print(f"Training data saved at {csv_path}")
# Plot loss and accuracy
plt.figure(figsize=(12, 4))
plt.subplot(2, 1, 1)
plt.plot(range(1, num_epochs + 1), train_loss_values, label='Training Loss')
plt.plot(range(1, num_epochs + 1), test_loss_values, label='Testing Loss')
plt.title('Training and Testing Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.subplot(2, 1, 2)
plt.plot(range(1, num_epochs + 1), train_accuracy_values, label='Training Accuracy')
plt.plot(range(1, num_epochs + 1), test_accuracy_values, label='Testing Accuracy')
plt.title('Training and Testing Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy (%)')
plt.legend()
png_path = os.path.join(output_folder3, f"{model_name}_{ext}.png")
pdf_path = os.path.join(output_folder3, f"{model_name}_{ext}.pdf")
plt.savefig(png_path, format='png', dpi=600)
plt.savefig(pdf_path, format='pdf', dpi=600)
print(f"Plots saved at {png_path} and {pdf_path}")
plt.tight_layout()
plt.show()