|
1 |
| -from .colors import Colors |
2 |
| -from .mcscan import Collinearity, Gff, XCollinearity |
3 |
| -from lazy_property import LazyWritableProperty as lazyproperty |
4 | 1 | import sys
|
5 | 2 | import numpy as np
|
6 | 3 | import collections
|
|
9 | 6 | from matplotlib.gridspec import GridSpec
|
10 | 7 | mpl.use("Agg")
|
11 | 8 | mpl.rcParams['pdf.fonttype'] = 42
|
| 9 | +from lazy_property import LazyWritableProperty as lazyproperty |
| 10 | +from .colors import Colors |
| 11 | +from .mcscan import Collinearity, Gff, XCollinearity |
12 | 12 |
|
13 | 13 |
|
14 | 14 | def eval(collinearities, orthologs, gff, ref=None, pre=None):
|
@@ -86,26 +86,18 @@ def plot_eval(d_rcs, outfig, legend_fontsize=9):
|
86 | 86 | bm = sum(rcs.refcounts[:, 1]) # gene number of all blocks
|
87 | 87 | kargs = dict(color=colors[i], alpha=1, label=_sp)
|
88 | 88 | ax0.plot(-2, -2, linestyle='-', marker='o', **kargs)
|
89 |
| -# ax0.barh(0, 0, height=0, left=0, align='center', label=_sp) |
90 | 89 |
|
91 | 90 | ax1.plot(range(1, nb+1), np.cumsum(ns),
|
92 | 91 | drawstyle="steps-post", **kargs)
|
93 | 92 | ax2.plot(range(1, nb+1), ns, drawstyle="steps-post", **kargs)
|
94 |
| -# ax2.scatter(i50, sn50, label=_sp) |
95 | 93 | ax3.scatter(len(rcs.ns), bm, **kargs)
|
96 |
| -# ax4.hist(rcs.extended_frs, bins=40, histtype='step', **kargs) |
97 | 94 | hist_plot(rcs.extended_frs, ax4, bins=40, **kargs)
|
98 |
| -# ax4.scatter(rcs.frs, rcs.ns, alpha=0.6, label=_sp) |
99 |
| -# ax5.scatter(fn50, sn50, alpha=0.8, label=_sp) |
100 | 95 | ax5.scatter(fm, sm, **kargs)
|
101 | 96 |
|
102 |
| -# ax5.hist(rcs.extended_ns, bins=30, histtype='step', label=_sp) |
103 |
| -# ax5.scatter(np.mean(rcs.extended_frs), np.mean(rcs.extended_ns), label=_sp) |
104 | 97 | ax6.scatter(fm, om, **kargs)
|
105 |
| -# ax7.hist(rcs.extended_ois, bins=40, histtype='step', **kargs) |
106 | 98 | hist_plot(rcs.extended_ois, ax7, bins=40, **kargs)
|
107 | 99 | ax8.plot(rcs.refcounts[:, 0], rcs.refcounts[:, 1], **kargs)
|
108 |
| -# print(sn50, sm) |
| 100 | + |
109 | 101 | line = [sp1, sp2, nb, bm, int(min(ns)), int(max(ns)), int(np.median(ns)),
|
110 | 102 | round(np.mean(ns), 1), sm, round(fm, 2), round(om, 2)]
|
111 | 103 | print('\t'.join(map(str, line)))
|
|
0 commit comments