-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
222 lines (179 loc) · 7.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
'''
the codes for training the model.
created by Xuying Zhang ([email protected]) on 2023-06-23
'''
import os
import numpy as np
from time import time
from tqdm import tqdm
from datetime import datetime
import torch
import torch.nn.functional as F
from tensorboardX import SummaryWriter
import torch.backends.cudnn as cudnn
import utils.metrics as Measure
from utils.utils import set_gpu, structure_loss, clip_gradient
from models.r2cnet import Network
from data import get_dataloader
def train(train_loader, model, optimizer, epoch, save_path, writer):
"""
train function
"""
global step
model.train()
loss_all = 0
epoch_step = 0
try:
for i, (images, gts, supp_feats, _) in enumerate(train_loader, start=1):
optimizer.zero_grad()
images = images.cuda()
gts = gts.cuda()
supp_feats = supp_feats.cuda()
preds, inner_preds = model(images, supp_feats)
main_loss = structure_loss(preds, gts)
aux_loss = structure_loss(inner_preds[0], gts)
inner_num = len(inner_preds)
for inner_idx in range(1, inner_num):
aux_loss = aux_loss + structure_loss(inner_preds[inner_idx], gts)
aux_loss /= inner_num
loss = main_loss + aux_loss
loss.backward()
clip_gradient(optimizer, opt.clip)
optimizer.step()
step += 1
epoch_step += 1
loss_all += loss.data
if i % 20 == 0 or i == total_step or i == 1:
print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Total_loss: {:.4f}'.
format(datetime.now(), epoch, opt.epoch, i, total_step, loss.data))
loss_all /= epoch_step
writer.add_scalar('Loss-epoch', loss_all, global_step=epoch)
if epoch % 10 == 0:
torch.save({
'state_dict': model.state_dict(),
'epoch': epoch
}, save_path + 'Net_epoch_{}.pth'.format(epoch))
except KeyboardInterrupt:
print('Keyboard Interrupt: save model and exit.')
if not os.path.exists(save_path):
os.makedirs(save_path)
torch.save({
'state_dict': model.state_dict(),
'epoch': epoch
}, save_path + 'Net_Interrupt_epoch_{}.pth'.format(epoch + 1))
print('Save checkpoints successfully!')
raise
def val(test_loader, model, epoch, save_path, writer):
"""
validation function
"""
global best_mae, best_epoch, best_score, best_other_epoch
WFM = Measure.WeightedFmeasure()
SM = Measure.Smeasure()
EM = Measure.Emeasure()
MAE = Measure.MAE()
model.eval()
with torch.no_grad():
with tqdm(total=len(test_loader)) as pbar:
for (image, gt, sf, _) in test_loader:
gt = gt.numpy().astype(np.float32).squeeze()
gt /= (gt.max() + 1e-8) # 标准化处理,把数值范围控制到(0,1)
image = image.cuda()
sf = sf.cuda()
res, _ = model(image, sf)
res = F.interpolate(res, size=gt.shape, mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8) # 标准化处理,把数值范围控制到(0,1)
WFM.step(pred=res*255, gt=gt*255)
SM.step(pred=res*255, gt=gt*255)
EM.step(pred=res*255, gt=gt*255)
MAE.step(pred=res*255, gt=gt*255)
pbar.update()
sm1 = SM.get_results()['sm'].round(3)
adpem1 = EM.get_results()['em']['adp'].round(3)
wfm1 = WFM.get_results()['wfm'].round(3)
mae1 = MAE.get_results()['mae'].round(3)
writer.add_scalar('Sm', torch.tensor(sm1), global_step=epoch)
writer.add_scalar('adaEm', torch.tensor(adpem1), global_step=epoch)
writer.add_scalar('wF', torch.tensor(wfm1), global_step=epoch)
writer.add_scalar('MAE', torch.tensor(mae1), global_step=epoch)
print('Epoch: {}, MAE: {}, bestMAE: {}, bestEpoch: {}.'.format(epoch, mae, best_mae, best_epoch))
if epoch == 1:
best_mae = mae
best_score = score
else:
if mae < best_mae:
best_mae = mae
best_epoch = epoch
torch.save({
'state_dict': model.state_dict(),
'epoch': epoch
}, save_path + 'Net_epoch_best.pth')
print('Save state_dict successfully! Best epoch:{}.'.format(epoch))
score = sm1 + adpem1 + wfm1
if score > best_score:
best_score = score
best_other_epoch = epoch
torch.save({
'state_dict': model.state_dict(),
'epoch': epoch
}, save_path + 'Net_epoch_other_best.pth')
print('Save state_dict successfully! Best other epoch:{}.'.format(epoch))
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='r2cnet')
parser.add_argument('--epoch', type=int, default=55, help='epoch number')
parser.add_argument('--lr', type=float, default=5e-4, help='learning rate')
parser.add_argument('--batchsize', type=int, default=32, help='training batch size')
parser.add_argument('--dim', type=int, default=64, help='training batch size')
parser.add_argument('--trainsize', type=int, default=352, help='training dataset size')
parser.add_argument('--shot', type=int, default=5)
parser.add_argument('--clip', type=float, default=0.5, help='gradient clipping margin')
parser.add_argument('--num_workers', type=int, default=8, help='the number of workers in dataloader')
parser.add_argument('--gpu_id', type=str, default='0', help='train use gpu')
parser.add_argument('--data_root', type=str, default='/home/zhangxuying/Datasets/R2C7K', help='the path to put dataset')
parser.add_argument('--save_root', type=str, default='./snapshot/', help='the path to save model params and log')
opt = parser.parse_args()
print(opt)
# set the device for training
set_gpu(opt.gpu_id)
cudnn.benchmark = True
start_time = time()
model = Network(channel=opt.dim).cuda()
base, body = [], []
for name, param in model.named_parameters():
if 'resnet' in name:
base.append(param)
else:
body.append(param)
params_dict = [{'params': base, 'lr': opt.lr * 0.1},
{'params': body, 'lr': opt.lr}]
optimizer = torch.optim.Adam(params_dict)
cosine_schedule = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=100)
print('load data...')
train_loader = get_dataloader(opt.data_root, opt.shot, opt.trainsize, opt.batchsize, opt.num_workers, mode='train')
val_loader = get_dataloader(opt.data_root, opt.shot, opt.trainsize, opt.num_workers, mode='val')
total_step = len(train_loader)
save_path = opt.save_root + 'saved_models/' + opt.model_name + '/'
save_logs_path = opt.save_root + 'logs/'
os.makedirs(save_path, exist_ok=True)
os.makedirs(save_logs_path, exist_ok=True)
writer = SummaryWriter(save_logs_path + opt.model_name)
step = 0
best_mae = 1
best_epoch = 0
best_score = 0.
best_other_epoch = 0
print("Start train...")
for epoch in range(1, opt.epoch):
# schedule
cosine_schedule.step()
writer.add_scalar('lr_base', cosine_schedule.get_lr()[0], global_step=epoch)
writer.add_scalar('lr_body', cosine_schedule.get_lr()[1], global_step=epoch)
# train
train(train_loader, model, optimizer, epoch, save_path, writer)
# val
val(val_loader, model, epoch, save_path, writer)
end_time = time()
print('it costs {} h to train'.format((end_time - start_time)/3600))