-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtoy_train_lpdg.py
267 lines (229 loc) · 10.2 KB
/
toy_train_lpdg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import argparse
import glob
import os
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
import shelve
import time
from tqdm import tqdm
import sys
import platform
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
sys.path.append('../')
sys.path.append('../../')
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from pytorch_lightning import loggers as pl_loggers
from pprint import pprint
import numpy as np
from toy_proximalgradient import LearnedProximal
device = torch.device('cpu')
class EITdataset(Dataset):
"""
return x-perm, y-电压
"""
def __init__(self, data_file_list):
# pprint(data_file_list)
xs_all, xs_inv_all, ys_all = None, None, None
for data_file in data_file_list:
if os.path.exists(data_file):
d = np.load(data_file)
xs_all = d['xs'] if (xs_all is None) else np.r_[xs_all, d['xs']]
xs_inv_all = d['xs_inv'] if (xs_inv_all is None) else np.r_[xs_inv_all, d['xs_inv']]
ys_all = d['ys'] if (ys_all is None) else np.r_[ys_all, d['ys']]
self.xs = torch.from_numpy(xs_all).float().unsqueeze(axis=1).to(device)
self.xs_inv = torch.from_numpy(xs_inv_all).float().unsqueeze(axis=1).to(device)
self.ys = torch.from_numpy(ys_all).float().unsqueeze(axis=1).to(device)
# print('-'*50)
# print(f' xs:{self.xs.shape}\nxs_inv:{self.xs_inv.shape}\n ys:{self.ys.shape}')
# print('-'*50)
def __getitem__(self, index):
x = self.xs[index]
x_inv = self.xs_inv[index]
y = self.ys[index]
return x, x_inv, y
def __len__(self):
return len(self.xs)
class EITDataModule(pl.LightningDataModule):
def __init__(self, train_data_file_list,
val_data_file_list,
batch_size=4,
batch_size_val=2,
num_data_loader_workers=0):
super().__init__()
self.train_data_file_list = train_data_file_list
self.val_data_file_list = val_data_file_list
self.batch_size = batch_size
self.batch_size_val = batch_size_val
def train_dataloader(self):
dataset = EITdataset(self.train_data_file_list)
dataloader = DataLoader(dataset,
batch_size=self.batch_size,
num_workers=0,
shuffle=True, drop_last=True)
print(f'TRAINING: \ndata length: {dataset.__len__()}\n batch_size: {dataloader.batch_size} \n iters/epoch: {len(dataloader)}\n')
return dataloader
def val_dataloader(self):
dataset = EITdataset(self.val_data_file_list)
dataloader = DataLoader(dataset,
batch_size=self.batch_size,
num_workers=0,
shuffle=False)
print(f' VALIDATION: \n data length: {dataset.__len__()}\n batch_size: {dataloader.batch_size} \n iters/epoch: {len(dataloader)}\n')
return dataloader
def gpu2numpy(x):
return x.cpu().numpy()
def plot_preds(pred, ground_truth, pred_gn, title):
n_col, n = ground_truth.shape[0], ground_truth.shape[-1]
fig, axes = plt.subplots(4, 1, figsize=(n_col * 4, 3 * 4))
for i, (p, gt, pg) in enumerate(zip(pred, ground_truth, pred_gn)):
axes[i].step(range(n), gt[0], 'k-', label='gt', lw=2)
axes[i].step(range(n), p[0], 'r-', label='pred')
if i > 1:
axes[i].step(range(n), pg[0], 'r--', label='init value')
axes[i].set_xlim([n // 4, n // 4 * 2])
if i >= (n_col - 1): break
fig.suptitle(title, fontsize=20)
plt.legend()
plt.tight_layout()
# plt.show()
return fig
def forward_and_jac(xs,args):
"""
Args:
xs: [b,1,dim_x]
args:
Returns:
ys: [b,1,dim_y]
grads: [b,dim_x,dim_y]
"""
W1 = torch.tensor(args['W1']).float().to(device)
W2 = torch.tensor(args['W2']).float().to(device)
steps = args['steps']
x_dim = args['x_dim']
y_dim = args['y_dim']
a = torch.tensor(args['a']).to(device)
s = args['size']
w = s//2
b, _, n = xs.shape
Kf = torch.zeros(b,1,y_dim)
jacs = torch.zeros(b,y_dim,x_dim)
for ind,x in enumerate(xs):
x = x[0]
y = torch.zeros(y_dim)
grads = torch.zeros(y_dim, x_dim)
for i, s in enumerate(steps):
x_temp = x[s - w:s + w + 1]
y_temp = a * x_temp.T @ W1 @ x_temp + W2.T @ x_temp
y[i] = y_temp.item()
grads[i, s - w:s + w + 1] = 2*a*W1@x_temp.T+W2.T
Kf[ind,0,:] = y
jacs[ind,:,:] = grads
return Kf.detach().to(device), jacs.detach().to(device)
class LearnedPGD(pl.LightningModule):
def __init__(self, shape_primal, grad_type, hypers):
super().__init__()
self.mse_loss = nn.MSELoss()
self.grad_type = grad_type
self.hypers = hypers
self.model = LearnedProximal(forward_and_jac, shape_primal, grad_type, hypers)
self.compute_metrics_for_gn = True
def forward(self, x_inv, y):
return self.model(x_inv, y)
def training_step(self, batch, batch_idx):
ground_truth, x_inv, y = batch #
output = self.forward(x_inv, y)
loss = self.mse_loss(output, ground_truth)
self.log('train_loss', loss)
return loss
def validation_step(self, batch, batch_idx):
ground_truth, x_inv, y = batch #
output = self.forward(x_inv, y)
loss = self.mse_loss(output, ground_truth)
# checkpoint the model and log the loss
self.log('val_loss', loss)
self.last_batch = batch
# idx_time = '_'.join([str(i) for i in time.localtime(time.time())[:5]])
# print(f"time: {idx_time}")
return loss
def configure_optimizers(self):
"""
Setup the optimizer. Currently, the ADAM optimizer is used.
Returns
-------
optimizer : torch optimizer
The Pytorch optimizer.
"""
optimizer = torch.optim.Adam(self.parameters(),
lr=0.001,
betas=(0.9,0.99))
# optimizer = torch.optim.SGD(self.parameters(),
# lr=0.1,
# weight_decay=0.01)
reduce_on_plateu = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,T_max=1000001) #xxx
schedulers = {
'scheduler': reduce_on_plateu,
'monitor': 'train_loss',
'interval': 'epoch', # xxx step or epoch
'frequency': 1}
return [optimizer], [schedulers]
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='lpd')
parser.add_argument('--n_epoch', type=int, default=50, help='the number of epoches') # xxx 实验参数
parser.add_argument('--batchsize', type=int, default=256, help='train batch size') # xxx 实验参数
parser.add_argument('--a', type=float, default=2.0, help='power of x')
parser.add_argument('--train_ratio', type=float, default=1, help='limit_train_batches')
parser.add_argument('--idx_grad', type=int, default=1, help='index of grad_type') # xxx 寻优参数
parser.add_argument('--layer', type=int, default=2, help='the number of layers in RNN') # xxx 寻优参数
parser.add_argument('--hidden', type=int, default=50, help='the number of hidden cells in RNN') # xxx 寻优参数
parser.add_argument('--n_test', type=int, default=0, help='number of test') # xxx 实验参数
parser.add_argument('--share_weight', type=int, default=0, help='1-share weight; 0-not share weight')
args = parser.parse_args()
print(args)
pl.seed_everything(args.n_test)
data_type = f'a{args.a:.1f}'
data_dir = os.path.join('datasets-toy-nonlinear', data_type)
print(data_dir)
time.sleep(np.random.rand() * 3)
hypers = np.load(os.path.join(data_dir, 'hypers.npz'))
hypers = dict(hypers)
hypers['layer_rnn'] = args.layer
hypers['hidden_rnn'] = args.hidden
hypers['share_weight'] = args.share_weight
data_file_list = [os.path.join(data_dir, f'{i}.npz') for i in range(22)]
train_data_file_list = data_file_list
val_data_file_list = data_file_list[-2:]
dataset = EITDataModule(train_data_file_list=train_data_file_list,
val_data_file_list=val_data_file_list,
batch_size=args.batchsize)
grad_type = ['baseline', 'momentum', 'lstm', 'gru'][args.idx_grad]
method = f'gt_{grad_type}_test_{args.n_test}_l_{args.layer}_hidden_{args.hidden}' # xxx
experiments = 'exp-toy-lposw' if args.share_weight else 'exp-toy-lpo'
log_dir = os.path.join(*['exp-toy', data_type, f'train_ratio{args.train_ratio:.1f}', experiments, method])
checkpoint_callback = ModelCheckpoint(save_top_k=1, verbose=True,monitor='val_loss', mode='min', save_last=True)
lr_monitor = LearningRateMonitor(logging_interval=None)
tb_logger = pl_loggers.TensorBoardLogger(log_dir)
trainer_args = {'default_root_dir': log_dir
, 'callbacks': [lr_monitor, checkpoint_callback]
, 'num_sanity_val_steps': 0
, 'benchmark': False
, 'fast_dev_run': False
, 'limit_train_batches': args.train_ratio/100.0
, 'limit_val_batches': 1.0
, 'gradient_clip_val': 1.0
, 'logger': tb_logger
, 'log_every_n_steps': 10
, 'enable_progress_bar': True
}
pprint(trainer_args)
shape_primal = int(hypers['x_dim'])
model = LearnedPGD(shape_primal, grad_type, hypers)
trainer = pl.Trainer(max_epochs=args.n_epoch, **trainer_args)
trainer.fit(model, datamodule=dataset)