We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
这是我根据您的提示 加的整体代码 class Perceptron(object): def init(self, epochs=10, eta=None, mode=None): self.mode = mode self.w = None self.epochs = epochs self.eta = eta
def init_params(self, n_features): """ 初始化参数 :return: """ self.w = np.random.random(size=(n_features + 1, 1)) def fit(self, x, y): if self.mode=='dual': self._dual_fit(x,y,epochs,eta) else: """ :param x: ndarray格式数据: m x n :param y: ndarray格式数据: m x 1 :return: """ # 设置学习率 if self.eta is None: self.eta = max(1e-2, 1.0 / np.sqrt(x.shape[0])) y = y.reshape(-1, 1) y[y == 0] = -1 # 初始化参数w,b n_samples, n_features = x.shape self.init_params(n_features) x = np.c_[x, np.ones(shape=(n_samples,))] x_y = np.c_[x, y] for _ in range(self.epochs): error_sum = 0 np.random.shuffle(x_y) for index in range(0, n_samples): x_i = x_y[index, :-1] y_i = x_y[index, -1:] # 更新错分点的参数 if (x_i.dot(self.w) * y_i)[0] < 0: dw = (-x_i * y_i).reshape(-1, 1) self.w = self.w - self.eta * dw error_sum += 1 if error_sum == 0: break def _dual_fit(self, x, y): """ 模型训练的对偶形式 :param x: :param y: :return: """ y = y.reshape(-1, 1) y[y == 0] = -1 n_samples, n_features = x.shape # 初始化参数 self.alpha = np.zeros(shape=(n_samples, 1)) x = np.c_[x, np.ones(shape=(n_samples,))] for _ in range(self.epochs): error_sum = 0 indices = list(range(0, n_samples)) np.random.shuffle(indices) for index in indices: x_i = x[index, :] y_i = y[index] # 更新错分点的参数,(注意需要有等号,因为初始化的alpha全为0) if (x_i.dot(x.T.dot(self.alpha * y)) * y_i)[0] <= 0: self.alpha[index] += self.eta error_sum += 1 if error_sum == 0: break # 更新回w self.w = x.T.dot(alpha * y) def get_params(self): """ 输出原始的系数 :return: w """ return self.w def predict(self, x): """ :param x:ndarray格式数据: m x n :return: m x 1 """ n_samples = x.shape[0] x = np.c_[x, np.ones(shape=(n_samples,))] return (x.dot(self.w) > 0).astype(int) def predict_proba(self, x): """ :param x:ndarray格式数据: m x n :return: m x 1 """ n_samples = x.shape[0] x = np.c_[x, np.ones(shape=(n_samples,))] return utils.sigmoid(x.dot(self.w)) def plot_decision_boundary(self, x, y): """ 绘制前两个维度的决策边界 :param x: :param y: :return: """ weights = self.get_params() w1 = weights[0][0] w2 = weights[1][0] bias = weights[-1][0] x1 = np.arange(np.min(x), np.max(x), 0.1) x2 = -w1 / w2 * x1 - bias / w2 plt.scatter(x[:, 0], x[:, 1], c=y, s=50) plt.plot(x1, x2, 'r') plt.show()
报的错误是 AttributeError: 'Perceptron' object has no attribute '_dual_fit' 请问该怎么解决 或者您贴一下对偶形式的代码,感谢感谢!
The text was updated successfully, but these errors were encountered:
No branches or pull requests
这是我根据您的提示 加的整体代码
class Perceptron(object):
def init(self, epochs=10, eta=None, mode=None):
self.mode = mode
self.w = None
self.epochs = epochs
self.eta = eta
报的错误是
AttributeError: 'Perceptron' object has no attribute '_dual_fit' 请问该怎么解决
或者您贴一下对偶形式的代码,感谢感谢!
The text was updated successfully, but these errors were encountered: