Skip to content

Commit 70b9dc6

Browse files
committed
typos
1 parent ac42713 commit 70b9dc6

File tree

1 file changed

+21
-21
lines changed

1 file changed

+21
-21
lines changed

theories/topology.v

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -117,12 +117,12 @@ Require Import mathcomp_extra reals signed.
117117
(* predicates on natural numbers that are *)
118118
(* eventually true. *)
119119
(* separates_points_from_closed f == For a closed set U and point x outside *)
120-
(* some member of the family `f` sends *)
121-
(* f_i(x) outside (closure (f_i@` U)). *)
122-
(* used together with `join_product` *)
123-
(* join_product f == The function (x i => f i x). When the *)
120+
(* some member of the family f sends *)
121+
(* f_i(x) outside (closure (f_i @` U)). *)
122+
(* Used together with join_product. *)
123+
(* join_product f == The function (x => f ^~ x). When the *)
124124
(* family f separates points from closed *)
125-
(* sets, join_product is an embedding *)
125+
(* sets, join_product is an embedding. *)
126126
(* *)
127127
(* * Near notations and tactics: *)
128128
(* --> The purpose of the near notations and tactics is to make the *)
@@ -3213,7 +3213,7 @@ Qed.
32133213
Definition hausdorff_accessible : hausdorff_space T -> accessible_space.
32143214
Proof.
32153215
rewrite open_hausdorff => hsdfT => x y /hsdfT [[U V] [xU yV]] [/= ? ? /eqP].
3216-
rewrite setIC => /disjoints_subset VUc; exists U; repeat split => //.
3216+
rewrite setIC => /disjoints_subset VUc; exists U; repeat split => //.
32173217
by rewrite inE; apply: VUc; rewrite -inE.
32183218
Qed.
32193219

@@ -6542,21 +6542,20 @@ Qed.
65426542
End SubspaceWeak.
65436543

65446544
Definition separates_points_from_closed {I : Type} {T : topologicalType}
6545-
{U_ : I -> topologicalType} (f_ : forall i, (T -> U_ i)) :=
6545+
{U_ : I -> topologicalType} (f_ : forall i, T -> U_ i) :=
65466546
forall (U : set T) x,
65476547
closed U -> ~ U x -> exists i, ~ (closure (f_ i @` U)) (f_ i x).
65486548

6549-
(* A handy technique for emebdding a space T into a product. The key interface
6550-
is 'separates_points_from_closed', which guarantees that the topologies
6549+
(* A handy technique for embedding a space T into a product. The key interface
6550+
is 'separates_points_from_closed', which guarantees that the topologies
65516551
- T's native topology
65526552
- sup (weak f_i) - the sup of all the weak topologies of f_i
65536553
- weak (x => (f_1 x, f_2 x,...)) - the weak topology from the product space
65546554
are equivalent (the last equivalence seems to require accessible_space).
65556555
*)
65566556
Section product_embeddings.
6557-
Context {I : choiceType} {T : topologicalType}.
6558-
Context {U_ : I -> topologicalType}.
6559-
Variable (f_ : forall i, (T -> U_ i)).
6557+
Context {I : choiceType} {T : topologicalType} {U_ : I -> topologicalType}.
6558+
Variable (f_ : forall i, T -> U_ i).
65606559

65616560
Hypothesis sepf : separates_points_from_closed f_.
65626561
Hypothesis ctsf : forall i, continuous (f_ i).
@@ -6576,7 +6575,7 @@ move=> FF; split.
65766575
move/cvg_sup => wiFx U; rewrite /= nbhs_simpl nbhsE => [[B [[oB ?]]]].
65776576
move/filterS; apply; have [//|i nclfix] := @sepf _ x (open_closedC oB).
65786577
apply: (wiFx i); have /= -> := @nbhsE (weak_topologicalType (f_ i)) x.
6579-
exists (f_ i @^-1` (~` closure [set f_ i x | x in ~` B])); repeat split => //.
6578+
exists (f_ i @^-1` (~` closure [set f_ i x | x in ~` B])); split; [split=>//|].
65806579
apply: open_comp; last by rewrite ?openC; last apply: closed_closure.
65816580
by move=> + _; exact: weak_continuous.
65826581
rewrite closureC preimage_bigcup => z [V [oV]] VnB => /VnB.
@@ -6596,7 +6595,7 @@ rewrite predeqE => A; rewrite ?openE /interior.
65966595
by split => + z => /(_ z); rewrite weak_sep_nbhsE.
65976596
Qed.
65986597

6599-
Definition join_product (x : T) : PU := fun i => f_ i x.
6598+
Definition join_product (x : T) : PU := f_ ^~ x.
66006599

66016600
Lemma join_product_continuous : continuous join_product.
66026601
Proof.
@@ -6610,21 +6609,22 @@ apply: open_comp => // + _; rewrite /cvg_to => x U.
66106609
by rewrite nbhs_simpl /= -weak_sep_nbhsE; move: x U; exact: ctsf.
66116610
Qed.
66126611

6613-
Lemma join_product_open : forall (A : set T), open A ->
6614-
open ((join_product @` A) : set (subspace (join_product @` setT))).
6612+
Lemma join_product_open (A : set T) : open A ->
6613+
open ((join_product @` A) : set (subspace (range join_product))).
66156614
Proof.
6616-
move=> A oA; rewrite openE => y /= [x Ax] jxy.
6615+
move=> oA; rewrite openE => y /= [x Ax] jxy.
66176616
have [// | i nAfiy] := @sepf (~` A) x (open_closedC oA).
66186617
pose B := prod_topo_apply i @^-1` (~` closure (f_ i @` ~` A)).
6619-
apply: (@filterS _ _ _ ((join_product @` setT) `&` B)).
6618+
apply: (@filterS _ _ _ (range join_product `&` B)).
66206619
move=> z [[w ?]] wzE Bz; exists w => //.
66216620
move: Bz; rewrite /B -wzE closureC; case=> K [oK KsubA] /KsubA.
66226621
have -> : prod_topo_apply i (join_product w) = f_ i w by [].
66236622
by move=> /exists2P/forallNP/(_ w)/not_andP [] // /contrapT.
66246623
apply: open_nbhs_nbhs; split; last by rewrite -jxy.
6625-
apply: openI; first exact: open_subspaceT; apply: open_subspaceW.
6626-
apply: open_comp; first by move=> + _; exact: prod_topo_apply_continuous.
6627-
by exact/closed_openC/closed_closure.
6624+
apply: openI; first exact: open_subspaceT.
6625+
apply: open_subspaceW; apply: open_comp.
6626+
by move=> + _; exact: prod_topo_apply_continuous.
6627+
exact/closed_openC/closed_closure.
66286628
Qed.
66296629

66306630
Lemma join_product_inj : accessible_space T -> set_inj [set: T] join_product.

0 commit comments

Comments
 (0)