diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..ef69548 --- /dev/null +++ b/.gitignore @@ -0,0 +1,692 @@ + + +### TEFN +.out +**dataset + +### Linux ### +*~ + +# temporary files which can be created if a process still has a handle open of a deleted file +.fuse_hidden* + +# KDE directory preferences +.directory + +# Linux trash folder which might appear on any partition or disk +.Trash-* + +# .nfs files are created when an open file is removed but is still being accessed +.nfs* + +### macOS ### +# General +.DS_Store +.AppleDouble +.LSOverride + +# Icon must end with two \r +Icon + + +# Thumbnails +._* + +# Files that might appear in the root of a volume +.DocumentRevisions-V100 +.fseventsd +.Spotlight-V100 +.TemporaryItems +.Trashes +.VolumeIcon.icns +.com.apple.timemachine.donotpresent + +# Directories potentially created on remote AFP share +.AppleDB +.AppleDesktop +Network Trash Folder +Temporary Items +.apdisk + +### macOS Patch ### +# iCloud generated files +*.icloud + +### PyCharm ### +# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio, WebStorm and Rider +# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839 + +# User-specific stuff +.idea/**/workspace.xml +.idea/**/tasks.xml +.idea/**/usage.statistics.xml +.idea/**/dictionaries +.idea/**/shelf + +# AWS User-specific +.idea/**/aws.xml + +# Generated files +.idea/**/contentModel.xml + +# Sensitive or high-churn files +.idea/**/dataSources/ +.idea/**/dataSources.ids +.idea/**/dataSources.local.xml +.idea/**/sqlDataSources.xml +.idea/**/dynamic.xml +.idea/**/uiDesigner.xml +.idea/**/dbnavigator.xml + +# Gradle +.idea/**/gradle.xml +.idea/**/libraries + +# Gradle and Maven with auto-import +# When using Gradle or Maven with auto-import, you should exclude module files, +# since they will be recreated, and may cause churn. Uncomment if using +# auto-import. +# .idea/artifacts +# .idea/compiler.xml +# .idea/jarRepositories.xml +# .idea/modules.xml +# .idea/*.iml +# .idea/modules +# *.iml +# *.ipr + +# CMake +cmake-build-*/ + +# Mongo Explorer plugin +.idea/**/mongoSettings.xml + +# File-based project format +*.iws + +# IntelliJ +out/ + +# mpeltonen/sbt-idea plugin +.idea_modules/ + +# JIRA plugin +atlassian-ide-plugin.xml + +# Cursive Clojure plugin +.idea/replstate.xml + +# SonarLint plugin +.idea/sonarlint/ + +# Crashlytics plugin (for Android Studio and IntelliJ) +com_crashlytics_export_strings.xml +crashlytics.properties +crashlytics-build.properties +fabric.properties + +# Editor-based Rest Client +.idea/httpRequests + +# Android studio 3.1+ serialized cache file +.idea/caches/build_file_checksums.ser + +### PyCharm Patch ### +# Comment Reason: https://github.com/joeblau/gitignore.io/issues/186#issuecomment-215987721 + +# *.iml +# modules.xml +# .idea/misc.xml +# *.ipr + +# Sonarlint plugin +# https://plugins.jetbrains.com/plugin/7973-sonarlint +.idea/**/sonarlint/ + +# SonarQube Plugin +# https://plugins.jetbrains.com/plugin/7238-sonarqube-community-plugin +.idea/**/sonarIssues.xml + +# Markdown Navigator plugin +# https://plugins.jetbrains.com/plugin/7896-markdown-navigator-enhanced +.idea/**/markdown-navigator.xml +.idea/**/markdown-navigator-enh.xml +.idea/**/markdown-navigator/ + +# Cache file creation bug +# See https://youtrack.jetbrains.com/issue/JBR-2257 +.idea/$CACHE_FILE$ + +# CodeStream plugin +# https://plugins.jetbrains.com/plugin/12206-codestream +.idea/codestream.xml + +# Azure Toolkit for IntelliJ plugin +# https://plugins.jetbrains.com/plugin/8053-azure-toolkit-for-intellij +.idea/**/azureSettings.xml + +### Python ### +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ +cover/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +.pybuilder/ +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +# For a library or package, you might want to ignore these files since the code is +# intended to run in multiple environments; otherwise, check them in: +# .python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# poetry +# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. +# This is especially recommended for binary packages to ensure reproducibility, and is more +# commonly ignored for libraries. +# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control +#poetry.lock + +# pdm +# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. +#pdm.lock +# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it +# in version control. +# https://pdm.fming.dev/#use-with-ide +.pdm.toml + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# pytype static type analyzer +.pytype/ + +# Cython debug symbols +cython_debug/ + +# PyCharm +# JetBrains specific template is maintained in a separate JetBrains.gitignore that can +# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore +# and can be added to the global gitignore or merged into this file. For a more nuclear +# option (not recommended) you can uncomment the following to ignore the entire idea folder. +#.idea/ + +### Python Patch ### +# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration +poetry.toml + +# ruff +.ruff_cache/ + +# LSP config files +pyrightconfig.json + +### TeX ### +## Core latex/pdflatex auxiliary files: +*.aux +*.lof +*.lot +*.fls +*.out +*.toc +*.fmt +*.fot +*.cb +*.cb2 +.*.lb + +## Intermediate documents: +*.dvi +*.xdv +*-converted-to.* +# these rules might exclude image files for figures etc. +# *.ps +# *.eps +# *.pdf + +## Generated if empty string is given at "Please type another file name for output:" +.pdf + +## Bibliography auxiliary files (bibtex/biblatex/biber): +*.bbl +*.bcf +*.blg +*-blx.aux +*-blx.bib +*.run.xml + +## Build tool auxiliary files: +*.fdb_latexmk +*.synctex +*.synctex(busy) +*.synctex.gz +*.synctex.gz(busy) +*.pdfsync + +## Build tool directories for auxiliary files +# latexrun +latex.out/ + +## Auxiliary and intermediate files from other packages: +# algorithms +*.alg +*.loa + +# achemso +acs-*.bib + +# amsthm +*.thm + +# beamer +*.nav +*.pre +*.snm +*.vrb + +# changes +*.soc + +# comment +*.cut + +# cprotect +*.cpt + +# elsarticle (documentclass of Elsevier journals) +*.spl + +# endnotes +*.ent + +# fixme +*.lox + +# feynmf/feynmp +*.mf +*.mp +*.t[1-9] +*.t[1-9][0-9] +*.tfm + +#(r)(e)ledmac/(r)(e)ledpar +*.end +*.?end +*.[1-9] +*.[1-9][0-9] +*.[1-9][0-9][0-9] +*.[1-9]R +*.[1-9][0-9]R +*.[1-9][0-9][0-9]R +*.eledsec[1-9] +*.eledsec[1-9]R +*.eledsec[1-9][0-9] +*.eledsec[1-9][0-9]R +*.eledsec[1-9][0-9][0-9] +*.eledsec[1-9][0-9][0-9]R + +# glossaries +*.acn +*.acr +*.glg +*.glo +*.gls +*.glsdefs +*.lzo +*.lzs +*.slg +*.slo +*.sls + +# uncomment this for glossaries-extra (will ignore makeindex's style files!) +# *.ist + +# gnuplot +*.gnuplot +*.table + +# gnuplottex +*-gnuplottex-* + +# gregoriotex +*.gaux +*.glog +*.gtex + +# htlatex +*.4ct +*.4tc +*.idv +*.lg +*.trc +*.xref + +# hyperref +*.brf + +# knitr +*-concordance.tex +# TODO Uncomment the next line if you use knitr and want to ignore its generated tikz files +# *.tikz +*-tikzDictionary + +# listings +*.lol + +# luatexja-ruby +*.ltjruby + +# makeidx +*.idx +*.ilg +*.ind + +# minitoc +*.maf +*.mlf +*.mlt +*.mtc[0-9]* +*.slf[0-9]* +*.slt[0-9]* +*.stc[0-9]* + +# minted +_minted* +*.pyg + +# morewrites +*.mw + +# newpax +*.newpax + +# nomencl +*.nlg +*.nlo +*.nls + +# pax +*.pax + +# pdfpcnotes +*.pdfpc + +# sagetex +*.sagetex.sage +*.sagetex.py +*.sagetex.scmd + +# scrwfile +*.wrt + +# svg +svg-inkscape/ + +# sympy +*.sout +*.sympy +sympy-plots-for-*.tex/ + +# pdfcomment +*.upa +*.upb + +# pythontex +*.pytxcode +pythontex-files-*/ + +# tcolorbox +*.listing + +# thmtools +*.loe + +# TikZ & PGF +*.dpth +*.md5 +*.auxlock + +# titletoc +*.ptc + +# todonotes +*.tdo + +# vhistory +*.hst +*.ver + +# easy-todo +*.lod + +# xcolor +*.xcp + +# xmpincl +*.xmpi + +# xindy +*.xdy + +# xypic precompiled matrices and outlines +*.xyc +*.xyd + +# endfloat +*.ttt +*.fff + +# Latexian +TSWLatexianTemp* + +## Editors: +# WinEdt +*.bak +*.sav + +# Texpad +.texpadtmp + +# LyX +*.lyx~ + +# Kile +*.backup + +# gummi +.*.swp + +# KBibTeX +*~[0-9]* + +# TeXnicCenter +*.tps + +# auto folder when using emacs and auctex +./auto/* +*.el + +# expex forward references with \gathertags +*-tags.tex + +# standalone packages +*.sta + +# Makeindex log files +*.lpz + +# xwatermark package +*.xwm + +# REVTeX puts footnotes in the bibliography by default, unless the nofootinbib +# option is specified. Footnotes are the stored in a file with suffix Notes.bib. +# Uncomment the next line to have this generated file ignored. +#*Notes.bib + +### TeX Patch ### +# LIPIcs / OASIcs +*.vtc + +# glossaries +*.glstex + +### VisualStudioCode ### +.vscode/* +!.vscode/settings.json +!.vscode/tasks.json +!.vscode/launch.json +!.vscode/extensions.json +!.vscode/*.code-snippets + +# Local History for Visual Studio Code +.history/ + +# Built Visual Studio Code Extensions +*.vsix + +### VisualStudioCode Patch ### +# Ignore all local history of files +.history +.ionide + +### Windows ### +# Windows thumbnail cache files +Thumbs.db +Thumbs.db:encryptable +ehthumbs.db +ehthumbs_vista.db + +# Dump file +*.stackdump + +# Folder config file +[Dd]esktop.ini + +# Recycle Bin used on file shares +$RECYCLE.BIN/ + +# Windows Installer files +*.cab +*.msi +*.msix +*.msm +*.msp + +# Windows shortcuts +*.lnk \ No newline at end of file diff --git a/.idea/.gitignore b/.idea/.gitignore new file mode 100644 index 0000000..35410ca --- /dev/null +++ b/.idea/.gitignore @@ -0,0 +1,8 @@ +# 默认忽略的文件 +/shelf/ +/workspace.xml +# 基于编辑器的 HTTP 客户端请求 +/httpRequests/ +# Datasource local storage ignored files +/dataSources/ +/dataSources.local.xml diff --git a/.idea/code.iml b/.idea/code.iml new file mode 100644 index 0000000..e0bab2b --- /dev/null +++ b/.idea/code.iml @@ -0,0 +1,12 @@ + + + + + + + + + + \ No newline at end of file diff --git a/.idea/inspectionProfiles/Project_Default.xml b/.idea/inspectionProfiles/Project_Default.xml new file mode 100644 index 0000000..9a304bd --- /dev/null +++ b/.idea/inspectionProfiles/Project_Default.xml @@ -0,0 +1,30 @@ + + + + \ No newline at end of file diff --git a/.idea/inspectionProfiles/profiles_settings.xml b/.idea/inspectionProfiles/profiles_settings.xml new file mode 100644 index 0000000..105ce2d --- /dev/null +++ b/.idea/inspectionProfiles/profiles_settings.xml @@ -0,0 +1,6 @@ + + + + \ No newline at end of file diff --git a/.idea/misc.xml b/.idea/misc.xml new file mode 100644 index 0000000..9fda29e --- /dev/null +++ b/.idea/misc.xml @@ -0,0 +1,7 @@ + + + + + + \ No newline at end of file diff --git a/.idea/modules.xml b/.idea/modules.xml new file mode 100644 index 0000000..23968dc --- /dev/null +++ b/.idea/modules.xml @@ -0,0 +1,8 @@ + + + + + + + + \ No newline at end of file diff --git a/config/ablation/ECL_script/TEFN_ac_p192.json b/config/ablation/ECL_script/TEFN_ac_p192.json new file mode 100644 index 0000000..53f5069 --- /dev/null +++ b/config/ablation/ECL_script/TEFN_ac_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ECL_script/TEFN_ac_p336.json b/config/ablation/ECL_script/TEFN_ac_p336.json new file mode 100644 index 0000000..616ff14 --- /dev/null +++ b/config/ablation/ECL_script/TEFN_ac_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ECL_script/TEFN_ac_p720.json b/config/ablation/ECL_script/TEFN_ac_p720.json new file mode 100644 index 0000000..4a5206e --- /dev/null +++ b/config/ablation/ECL_script/TEFN_ac_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ECL_script/TEFN_ac_p96.json b/config/ablation/ECL_script/TEFN_ac_p96.json new file mode 100644 index 0000000..1824c3a --- /dev/null +++ b/config/ablation/ECL_script/TEFN_ac_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ECL_script/TEFN_at_p192.json b/config/ablation/ECL_script/TEFN_at_p192.json new file mode 100644 index 0000000..bb9e775 --- /dev/null +++ b/config/ablation/ECL_script/TEFN_at_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ECL_script/TEFN_at_p336.json b/config/ablation/ECL_script/TEFN_at_p336.json new file mode 100644 index 0000000..af557bf --- /dev/null +++ b/config/ablation/ECL_script/TEFN_at_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ECL_script/TEFN_at_p720.json b/config/ablation/ECL_script/TEFN_at_p720.json new file mode 100644 index 0000000..80116c2 --- /dev/null +++ b/config/ablation/ECL_script/TEFN_at_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ECL_script/TEFN_at_p96.json b/config/ablation/ECL_script/TEFN_at_p96.json new file mode 100644 index 0000000..a5e0629 --- /dev/null +++ b/config/ablation/ECL_script/TEFN_at_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh1_p192.json b/config/ablation/ETT_script/TEFN_ac_ETTh1_p192.json new file mode 100644 index 0000000..0d6abe8 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTh1_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN_ac", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh1_p336.json b/config/ablation/ETT_script/TEFN_ac_ETTh1_p336.json new file mode 100644 index 0000000..69c2499 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTh1_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN_ac", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh1_p720.json b/config/ablation/ETT_script/TEFN_ac_ETTh1_p720.json new file mode 100644 index 0000000..9e87e14 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTh1_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN_ac", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh1_p96.json b/config/ablation/ETT_script/TEFN_ac_ETTh1_p96.json new file mode 100644 index 0000000..4fa9634 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTh1_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN_ac", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh2_p192.json b/config/ablation/ETT_script/TEFN_ac_ETTh2_p192.json new file mode 100644 index 0000000..4885d0a --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTh2_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN_ac", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh2_p336.json b/config/ablation/ETT_script/TEFN_ac_ETTh2_p336.json new file mode 100644 index 0000000..ad4f349 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTh2_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN_ac", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh2_p720.json b/config/ablation/ETT_script/TEFN_ac_ETTh2_p720.json new file mode 100644 index 0000000..b97c54c --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTh2_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN_ac", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh2_p96.json b/config/ablation/ETT_script/TEFN_ac_ETTh2_p96.json new file mode 100644 index 0000000..ab6fa20 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTh2_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN_ac", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm1_p192.json b/config/ablation/ETT_script/TEFN_ac_ETTm1_p192.json new file mode 100644 index 0000000..d924ab1 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTm1_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN_ac", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm1_p336.json b/config/ablation/ETT_script/TEFN_ac_ETTm1_p336.json new file mode 100644 index 0000000..d4a52d6 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTm1_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN_ac", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm1_p720.json b/config/ablation/ETT_script/TEFN_ac_ETTm1_p720.json new file mode 100644 index 0000000..0ea16b2 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTm1_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN_ac", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm1_p96.json b/config/ablation/ETT_script/TEFN_ac_ETTm1_p96.json new file mode 100644 index 0000000..8260656 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTm1_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN_ac", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm2_p192.json b/config/ablation/ETT_script/TEFN_ac_ETTm2_p192.json new file mode 100644 index 0000000..b067b3d --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTm2_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN_ac", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm2_p336.json b/config/ablation/ETT_script/TEFN_ac_ETTm2_p336.json new file mode 100644 index 0000000..8531d3d --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTm2_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN_ac", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm2_p720.json b/config/ablation/ETT_script/TEFN_ac_ETTm2_p720.json new file mode 100644 index 0000000..edd4e7e --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTm2_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN_ac", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm2_p96.json b/config/ablation/ETT_script/TEFN_ac_ETTm2_p96.json new file mode 100644 index 0000000..0ca16c7 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_ac_ETTm2_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN_ac", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTh1_p192.json b/config/ablation/ETT_script/TEFN_at_ETTh1_p192.json new file mode 100644 index 0000000..606d588 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTh1_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN_at", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTh1_p336.json b/config/ablation/ETT_script/TEFN_at_ETTh1_p336.json new file mode 100644 index 0000000..451aa70 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTh1_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN_at", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTh1_p720.json b/config/ablation/ETT_script/TEFN_at_ETTh1_p720.json new file mode 100644 index 0000000..317468b --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTh1_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN_at", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTh1_p96.json b/config/ablation/ETT_script/TEFN_at_ETTh1_p96.json new file mode 100644 index 0000000..a495380 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTh1_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN_at", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTh2_p192.json b/config/ablation/ETT_script/TEFN_at_ETTh2_p192.json new file mode 100644 index 0000000..ef7bd34 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTh2_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN_at", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTh2_p336.json b/config/ablation/ETT_script/TEFN_at_ETTh2_p336.json new file mode 100644 index 0000000..042a92b --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTh2_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN_at", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTh2_p720.json b/config/ablation/ETT_script/TEFN_at_ETTh2_p720.json new file mode 100644 index 0000000..56c0e45 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTh2_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN_at", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTh2_p96.json b/config/ablation/ETT_script/TEFN_at_ETTh2_p96.json new file mode 100644 index 0000000..42bd13b --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTh2_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN_at", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTm1_p192.json b/config/ablation/ETT_script/TEFN_at_ETTm1_p192.json new file mode 100644 index 0000000..c9f9d65 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTm1_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN_at", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTm1_p336.json b/config/ablation/ETT_script/TEFN_at_ETTm1_p336.json new file mode 100644 index 0000000..bccc328 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTm1_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN_at", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTm1_p720.json b/config/ablation/ETT_script/TEFN_at_ETTm1_p720.json new file mode 100644 index 0000000..b6c8bfd --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTm1_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN_at", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTm1_p96.json b/config/ablation/ETT_script/TEFN_at_ETTm1_p96.json new file mode 100644 index 0000000..c817efb --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTm1_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN_at", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTm2_p192.json b/config/ablation/ETT_script/TEFN_at_ETTm2_p192.json new file mode 100644 index 0000000..1d5f9bf --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTm2_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN_at", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTm2_p336.json b/config/ablation/ETT_script/TEFN_at_ETTm2_p336.json new file mode 100644 index 0000000..dbbe8dd --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTm2_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN_at", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTm2_p720.json b/config/ablation/ETT_script/TEFN_at_ETTm2_p720.json new file mode 100644 index 0000000..484de99 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTm2_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN_at", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/ETT_script/TEFN_at_ETTm2_p96.json b/config/ablation/ETT_script/TEFN_at_ETTm2_p96.json new file mode 100644 index 0000000..9a3fe68 --- /dev/null +++ b/config/ablation/ETT_script/TEFN_at_ETTm2_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN_at", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Exchange_script/TEFN_ac_p192.json b/config/ablation/Exchange_script/TEFN_ac_p192.json new file mode 100644 index 0000000..5b192dc --- /dev/null +++ b/config/ablation/Exchange_script/TEFN_ac_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Exchange_script/TEFN_ac_p336.json b/config/ablation/Exchange_script/TEFN_ac_p336.json new file mode 100644 index 0000000..837349d --- /dev/null +++ b/config/ablation/Exchange_script/TEFN_ac_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Exchange_script/TEFN_ac_p720.json b/config/ablation/Exchange_script/TEFN_ac_p720.json new file mode 100644 index 0000000..a45c095 --- /dev/null +++ b/config/ablation/Exchange_script/TEFN_ac_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Exchange_script/TEFN_ac_p96.json b/config/ablation/Exchange_script/TEFN_ac_p96.json new file mode 100644 index 0000000..19b94f0 --- /dev/null +++ b/config/ablation/Exchange_script/TEFN_ac_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Exchange_script/TEFN_at_p192.json b/config/ablation/Exchange_script/TEFN_at_p192.json new file mode 100644 index 0000000..24d752b --- /dev/null +++ b/config/ablation/Exchange_script/TEFN_at_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Exchange_script/TEFN_at_p336.json b/config/ablation/Exchange_script/TEFN_at_p336.json new file mode 100644 index 0000000..9248bcb --- /dev/null +++ b/config/ablation/Exchange_script/TEFN_at_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Exchange_script/TEFN_at_p720.json b/config/ablation/Exchange_script/TEFN_at_p720.json new file mode 100644 index 0000000..2d94493 --- /dev/null +++ b/config/ablation/Exchange_script/TEFN_at_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Exchange_script/TEFN_at_p96.json b/config/ablation/Exchange_script/TEFN_at_p96.json new file mode 100644 index 0000000..de70844 --- /dev/null +++ b/config/ablation/Exchange_script/TEFN_at_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Traffic_script/TEFN_ac_p192.json b/config/ablation/Traffic_script/TEFN_ac_p192.json new file mode 100644 index 0000000..f4df8b9 --- /dev/null +++ b/config/ablation/Traffic_script/TEFN_ac_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Traffic_script/TEFN_ac_p336.json b/config/ablation/Traffic_script/TEFN_ac_p336.json new file mode 100644 index 0000000..6c267c0 --- /dev/null +++ b/config/ablation/Traffic_script/TEFN_ac_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Traffic_script/TEFN_ac_p720.json b/config/ablation/Traffic_script/TEFN_ac_p720.json new file mode 100644 index 0000000..d6984b9 --- /dev/null +++ b/config/ablation/Traffic_script/TEFN_ac_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Traffic_script/TEFN_ac_p96.json b/config/ablation/Traffic_script/TEFN_ac_p96.json new file mode 100644 index 0000000..3b6f3b1 --- /dev/null +++ b/config/ablation/Traffic_script/TEFN_ac_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Traffic_script/TEFN_at_p192.json b/config/ablation/Traffic_script/TEFN_at_p192.json new file mode 100644 index 0000000..b51c237 --- /dev/null +++ b/config/ablation/Traffic_script/TEFN_at_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Traffic_script/TEFN_at_p336.json b/config/ablation/Traffic_script/TEFN_at_p336.json new file mode 100644 index 0000000..1bcf7ea --- /dev/null +++ b/config/ablation/Traffic_script/TEFN_at_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Traffic_script/TEFN_at_p720.json b/config/ablation/Traffic_script/TEFN_at_p720.json new file mode 100644 index 0000000..3f4b8f2 --- /dev/null +++ b/config/ablation/Traffic_script/TEFN_at_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Traffic_script/TEFN_at_p96.json b/config/ablation/Traffic_script/TEFN_at_p96.json new file mode 100644 index 0000000..fb29662 --- /dev/null +++ b/config/ablation/Traffic_script/TEFN_at_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Weather_script/TEFN_ac_p192.json b/config/ablation/Weather_script/TEFN_ac_p192.json new file mode 100644 index 0000000..0547cdd --- /dev/null +++ b/config/ablation/Weather_script/TEFN_ac_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Weather_script/TEFN_ac_p336.json b/config/ablation/Weather_script/TEFN_ac_p336.json new file mode 100644 index 0000000..82e7bfe --- /dev/null +++ b/config/ablation/Weather_script/TEFN_ac_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Weather_script/TEFN_ac_p720.json b/config/ablation/Weather_script/TEFN_ac_p720.json new file mode 100644 index 0000000..8091b30 --- /dev/null +++ b/config/ablation/Weather_script/TEFN_ac_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Weather_script/TEFN_ac_p96.json b/config/ablation/Weather_script/TEFN_ac_p96.json new file mode 100644 index 0000000..8c83887 --- /dev/null +++ b/config/ablation/Weather_script/TEFN_ac_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Weather_script/TEFN_at_p192.json b/config/ablation/Weather_script/TEFN_at_p192.json new file mode 100644 index 0000000..833dbae --- /dev/null +++ b/config/ablation/Weather_script/TEFN_at_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Weather_script/TEFN_at_p336.json b/config/ablation/Weather_script/TEFN_at_p336.json new file mode 100644 index 0000000..f7f306c --- /dev/null +++ b/config/ablation/Weather_script/TEFN_at_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Weather_script/TEFN_at_p720.json b/config/ablation/Weather_script/TEFN_at_p720.json new file mode 100644 index 0000000..5f7c230 --- /dev/null +++ b/config/ablation/Weather_script/TEFN_at_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/ablation/Weather_script/TEFN_at_p96.json b/config/ablation/Weather_script/TEFN_at_p96.json new file mode 100644 index 0000000..93bff58 --- /dev/null +++ b/config/ablation/Weather_script/TEFN_at_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ECL_script/TEFN_p192.json b/config/comparision/ECL_script/TEFN_p192.json new file mode 100644 index 0000000..38582b1 --- /dev/null +++ b/config/comparision/ECL_script/TEFN_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ECL_script/TEFN_p336.json b/config/comparision/ECL_script/TEFN_p336.json new file mode 100644 index 0000000..49a5a45 --- /dev/null +++ b/config/comparision/ECL_script/TEFN_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ECL_script/TEFN_p720.json b/config/comparision/ECL_script/TEFN_p720.json new file mode 100644 index 0000000..4ff9394 --- /dev/null +++ b/config/comparision/ECL_script/TEFN_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ECL_script/TEFN_p96.json b/config/comparision/ECL_script/TEFN_p96.json new file mode 100644 index 0000000..feca76e --- /dev/null +++ b/config/comparision/ECL_script/TEFN_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTh1_p192.json b/config/comparision/ETT_script/TEFN_ETTh1_p192.json new file mode 100644 index 0000000..ca094b6 --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTh1_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTh1_p336.json b/config/comparision/ETT_script/TEFN_ETTh1_p336.json new file mode 100644 index 0000000..b1ae66c --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTh1_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTh1_p720.json b/config/comparision/ETT_script/TEFN_ETTh1_p720.json new file mode 100644 index 0000000..09930d8 --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTh1_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTh1_p96.json b/config/comparision/ETT_script/TEFN_ETTh1_p96.json new file mode 100644 index 0000000..f340f50 --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTh1_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTh2_p192.json b/config/comparision/ETT_script/TEFN_ETTh2_p192.json new file mode 100644 index 0000000..9ca8b4b --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTh2_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTh2_p336.json b/config/comparision/ETT_script/TEFN_ETTh2_p336.json new file mode 100644 index 0000000..c16ba81 --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTh2_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTh2_p720.json b/config/comparision/ETT_script/TEFN_ETTh2_p720.json new file mode 100644 index 0000000..011834d --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTh2_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTh2_p96.json b/config/comparision/ETT_script/TEFN_ETTh2_p96.json new file mode 100644 index 0000000..33019c3 --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTh2_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTm1_p192.json b/config/comparision/ETT_script/TEFN_ETTm1_p192.json new file mode 100644 index 0000000..952c3f7 --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTm1_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTm1_p336.json b/config/comparision/ETT_script/TEFN_ETTm1_p336.json new file mode 100644 index 0000000..bee9c45 --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTm1_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTm1_p720.json b/config/comparision/ETT_script/TEFN_ETTm1_p720.json new file mode 100644 index 0000000..855e31c --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTm1_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTm1_p96.json b/config/comparision/ETT_script/TEFN_ETTm1_p96.json new file mode 100644 index 0000000..c9aa928 --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTm1_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTm2_p192.json b/config/comparision/ETT_script/TEFN_ETTm2_p192.json new file mode 100644 index 0000000..588ff69 --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTm2_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTm2_p336.json b/config/comparision/ETT_script/TEFN_ETTm2_p336.json new file mode 100644 index 0000000..db0e5fd --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTm2_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTm2_p720.json b/config/comparision/ETT_script/TEFN_ETTm2_p720.json new file mode 100644 index 0000000..5949872 --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTm2_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/ETT_script/TEFN_ETTm2_p96.json b/config/comparision/ETT_script/TEFN_ETTm2_p96.json new file mode 100644 index 0000000..ffbaa2b --- /dev/null +++ b/config/comparision/ETT_script/TEFN_ETTm2_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/Exchange_script/TEFN_p192.json b/config/comparision/Exchange_script/TEFN_p192.json new file mode 100644 index 0000000..b2b3608 --- /dev/null +++ b/config/comparision/Exchange_script/TEFN_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/Exchange_script/TEFN_p336.json b/config/comparision/Exchange_script/TEFN_p336.json new file mode 100644 index 0000000..e58ea0f --- /dev/null +++ b/config/comparision/Exchange_script/TEFN_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/Exchange_script/TEFN_p720.json b/config/comparision/Exchange_script/TEFN_p720.json new file mode 100644 index 0000000..a933fb0 --- /dev/null +++ b/config/comparision/Exchange_script/TEFN_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/Exchange_script/TEFN_p96.json b/config/comparision/Exchange_script/TEFN_p96.json new file mode 100644 index 0000000..2c01598 --- /dev/null +++ b/config/comparision/Exchange_script/TEFN_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/Traffic_script/TEFN_p192.json b/config/comparision/Traffic_script/TEFN_p192.json new file mode 100644 index 0000000..d0d406f --- /dev/null +++ b/config/comparision/Traffic_script/TEFN_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/Traffic_script/TEFN_p336.json b/config/comparision/Traffic_script/TEFN_p336.json new file mode 100644 index 0000000..4713c2f --- /dev/null +++ b/config/comparision/Traffic_script/TEFN_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/Traffic_script/TEFN_p720.json b/config/comparision/Traffic_script/TEFN_p720.json new file mode 100644 index 0000000..c9eb611 --- /dev/null +++ b/config/comparision/Traffic_script/TEFN_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/Traffic_script/TEFN_p96.json b/config/comparision/Traffic_script/TEFN_p96.json new file mode 100644 index 0000000..1f15592 --- /dev/null +++ b/config/comparision/Traffic_script/TEFN_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/Weather_script/TEFN_p192.json b/config/comparision/Weather_script/TEFN_p192.json new file mode 100644 index 0000000..22a3a9c --- /dev/null +++ b/config/comparision/Weather_script/TEFN_p192.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/Weather_script/TEFN_p336.json b/config/comparision/Weather_script/TEFN_p336.json new file mode 100644 index 0000000..79302e1 --- /dev/null +++ b/config/comparision/Weather_script/TEFN_p336.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/Weather_script/TEFN_p720.json b/config/comparision/Weather_script/TEFN_p720.json new file mode 100644 index 0000000..cacb044 --- /dev/null +++ b/config/comparision/Weather_script/TEFN_p720.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/comparision/Weather_script/TEFN_p96.json b/config/comparision/Weather_script/TEFN_p96.json new file mode 100644 index 0000000..5a081c5 --- /dev/null +++ b/config/comparision/Weather_script/TEFN_p96.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..3630d40 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..930287a --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..38582b1 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..1904de9 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..96d011d --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..4858c04 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..dc109e6 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..74ba5c1 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..5d19db4 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..07aa1da --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..fb25935 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..eada788 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..7efcb51 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..3d00db8 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..e21812a --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..42dc6bf --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..e4a367f --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..18cb65f --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..d9a901c --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..21daa47 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..a94d986 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..9dc8665 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..1867558 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..6b23b1f --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..7b67cb1 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..f70b567 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..f6b1c2d --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..4e6380b --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..4fcfe1c --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..49a5a45 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..ffb90e5 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..f2ab8fa --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..342c520 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..345656d --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..22d7fd7 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..56431d3 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..154c75f --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..ef0212e --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..7026b6b --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..bbf09fb --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..46ccefb --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..35ffa11 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..3ef121c --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..54bc748 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..27b03f4 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..4ff9394 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..ea5541d --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..5338309 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..2718c3c --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..6ab8a9b --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..b7ca292 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..ba5d724 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..51f4a83 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..d9d2ca0 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..92bcded --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..9cb13ca --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..d6fe5c1 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..40e2e0b --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..a5fa309 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..e9665ab --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..3080669 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..4e2272a --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..0920f04 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..680f50b --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..9679bf9 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..bd114d1 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..7119205 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..a7c7af1 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..d41ef83 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..fe445fe --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..feca76e --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..3def1d3 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..aeb1749 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..3b14776 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..bedcadd --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..cfca847 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..f574966 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..86cfd73 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..7b2a9d5 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..476c190 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..1ad6ac3 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..2036443 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..eca9130 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..fac7f93 --- /dev/null +++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..a426e77 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..6d8f270 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..f92b9ff --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..2ef5200 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..772bca7 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..926dfe0 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..8646fc8 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..72fb275 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..667f5e3 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..3882824 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..d5fa5cc --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..ca094b6 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..f036e2f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..f4ab4ce --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..e37400f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..0034050 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..00851d2 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..fed7bb2 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..3ca58db --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..953ab94 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..6935564 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..19d303a --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..b1ae66c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..43d9e48 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..d3fa5af --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..ae11f63 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..f40bb39 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..8ea2878 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..52861b1 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..dd19e5b --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..7db86ef --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..54426af --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..5e20fc7 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..07aae2c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..a46da9a --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..aabe850 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..8a23302 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..e482d4e --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..788c076 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..75fb7c6 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..9017e1c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..be2994d --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..241b4aa --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..903ef89 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..77b5300 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..88a7bd0 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..dde0d47 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..fcc108f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..af5fdf7 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..fa069f3 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..09930d8 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..ca9b972 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..974e83d --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..83595be --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..8bb3791 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..4e7d7f2 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..1551a05 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..0839b9c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..c4006be --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..17b5758 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..30f064c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..113c3c0 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..07af591 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..1136741 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..8c8f7c1 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..f340f50 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..821c36d --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..436ecb6 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..bf0b1c4 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..b04f8e3 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..da3c8b0 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..a95b2ed --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..0437518 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..f12e12f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..599d334 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..f720261 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..9b00845 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..5448da2 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..8b8219d --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..2a7744a --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..2e3f000 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..1ce3187 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..6c0a768 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..b5c19cf --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..9b8f446 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..e381885 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..468ce06 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..8bf8098 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..ab8a5ee --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..be2cc65 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..e9bcff1 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..9ca8b4b --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..1de08a6 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..94af1ac --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..3ec6d7f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..c996fb6 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..237319b --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..ece0387 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..338d351 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..03a899f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..a48f0b2 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..358c284 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..81e1ff5 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..32255c2 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..77b5d6a --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..6b5f77b --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..0dffa15 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..012546b --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..f72a8c3 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..fb54fef --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..70ead33 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..afa7392 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..9cf6e3d --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..045c2c6 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..3962abe --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..1ae1513 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..e427a50 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..0048765 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..c16ba81 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..5e5cea9 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..883e822 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..256ce66 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..0bd4306 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..731ca98 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..d958db4 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..eec50dc --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..a3f3e55 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..1f75316 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..2c00676 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..2ea44b1 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..552b73c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..408e2c0 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..366db55 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..b46fadb --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..c471586 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..db9c03d --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..48e0483 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..0b282fc --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..2fc0e97 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..f1b02c8 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..011834d --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..820778b --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..66e68b9 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..3ccb289 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..888df7f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..ed421d5 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..28e997c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..33019c3 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..095e188 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..01b54eb --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..a544e7e --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..e1b5846 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..4f15adf --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..944229a --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..9c187d2 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..35f0dbc --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..3b1f561 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..2cc5354 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..df09222 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..3990377 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..55bab4a --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..c6d7260 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..3c30262 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..dffa25d --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..a9371b7 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..3760fd3 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..60fdce1 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..3ba2109 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..6108dc8 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..a9ec5e8 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..bb7cce5 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..6eac122 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..3a34722 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..581e106 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..e30f836 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..6f4dfef --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..b93bf26 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..ba85b76 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..d9f016a --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..952c3f7 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..b6bffb5 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..7ee4ec0 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..619670a --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..0ee134c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..2e060ef --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..2358036 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..e755bfb --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..bee9c45 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..d9da592 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..fd74345 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..a0dacd9 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..e9cf7cd --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..748d97c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..0cd6359 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..d58632c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..8a25c56 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..2138dbc --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..036e3e4 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..283a6c3 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..7711874 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..6073d8f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..a55b4c3 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..f2dee89 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..fdf14ef --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..494276e --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..47a7ce2 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..b366b28 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..f7a485f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..4414e4e --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..f86d0b0 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..808bcd7 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..affa1da --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..855e31c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..f8e9077 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..ce6da56 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..6a285f7 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..2966c62 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..7b14526 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..07a2661 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..aa20895 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..1c77c35 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..c16a10f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..ff5e03e --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..0ce6e0c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..c6cd8c4 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..4770d98 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..790486a --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..4e56541 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..1d2e225 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..0387791 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..a88bbd2 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..74b134a --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..c9aa928 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..50629bb --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..8e02fdd --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..be6864f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..2fbe7e3 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..6b54f23 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..87e405f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..6506ac4 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..3ec501f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..38da48d --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..a9b482f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..f646264 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..88e95ea --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..c45ec84 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..99ceb3d --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..e124441 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..90ab00d --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..588ff69 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..a96408f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..bb95cac --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..b6ff169 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..be59cd2 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..ef16be8 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..284fe02 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..88be9e7 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..4cec6e7 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..23b4ab2 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..d84107c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..bab287d --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..4882594 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..467b180 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..6e2abc1 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..9bc4766 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..fc2c033 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..f5305a5 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..46d0967 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..02ecbff --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..aec844c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..8500337 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..32fc75c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..ac28611 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..db0e5fd --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..d6dfffa --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..8f0a943 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..4bfcd33 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..258564d --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..982743c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..d0c290d --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..bac506e --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..5b75e2f --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..b753416 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..d8864d4 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..6f628d0 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..7bc21a0 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..bd71b9e --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..b5ceca4 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..66e3d11 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..31bdea9 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..ea4b6a6 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..c2babe2 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..0499136 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..5949872 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..457f17e --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..75ca5e8 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..42a56db --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..5115cd2 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..b184737 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..d99165e --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..ed09902 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..7947c29 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..0d6af1b --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..7be4dc6 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..61b3770 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..9587833 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..c8e99a3 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..b412477 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..121a3c4 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..18f2e44 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..19e0a07 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..5274ac3 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..af028c4 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..1ba3173 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..acdc24c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..89a3289 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..612ad7e --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..8e01f63 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..f93ec7b --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..b8c729c --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..65f2127 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..2315094 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..ffbaa2b --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..5b1cb03 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..fe0382b --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..47c8642 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..01d7673 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..9f20ba1 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..f671c97 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..9093e8e --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..d9a9791 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..9e65b40 --- /dev/null +++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..97c8fa3 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..dae621c --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..023399a --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..2254696 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..2da59ee --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..88c77ca --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..8205979 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..c0a3594 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..c54f35c --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..1828810 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..d0dd51a --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..be25e7c --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..f68c9c2 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..cbbda13 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..f459e29 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..3d692c0 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..f7e75e6 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..b2b3608 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..7c77853 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..e4bc6f2 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..d5656e9 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..e58ea0f --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..42293ab --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..af039a9 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..479e490 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..555d912 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..839d774 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..bdd0319 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..3c185d0 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..5e50ced --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..9944780 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..f24dc76 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..4081842 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..06ca2bf --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..52b3388 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..f5d248b --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..29616d5 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..ad0e2e3 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..c08453f --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..224f65a --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..69f854e --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..708b236 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..7a05d69 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..0db625c --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..963de76 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..3925102 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..71389a5 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..0e1decb --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..e008ad3 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..cbc31e9 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..9192d57 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..2520c9d --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..4731ae0 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..a933fb0 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..3a3c269 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..c648a0d --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..1133fa9 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..369cd4b --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..d962f25 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..f712b92 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..94ceb3c --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..ca32a0f --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..8caf851 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..41147d7 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..0c2294d --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..279bb98 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..d3d24ef --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..268aec8 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..dbc7155 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..8708db9 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..2c01598 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..f9bed1a --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..ec01e32 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..5dc6a5b --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..054dfa6 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..ea2c2c5 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..fa36d24 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..c0941cc --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..9fc90de --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..8bf0eb0 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..38f63eb --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..fe23676 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..0deaf40 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..7e2f6e3 --- /dev/null +++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..dc4066e --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..5d948db --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..3f03db1 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..689d6c5 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..e6a5bc1 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..182295c --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..cfecb61 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..80ed2e7 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..3a0a8f7 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..793bfc1 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..9027687 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..a161d41 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..894a961 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..e27fe05 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..b16a4db --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..7ab2184 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..ec68d42 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..7161ae6 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..3b4359a --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..040900c --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..083e5f4 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..35bc716 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..159d776 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..67145ab --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..4ad7f0d --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..9e84789 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..7a62d3b --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..25c21f4 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..684aca0 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..04853d7 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..5d09129 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..46b5576 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..2ee4ebb --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..002f437 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..2b1102e --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..b266254 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..f2e2a64 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..a2ea10a --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..419f28a --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..783d08c --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..60b492e --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..825dac5 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..aafde48 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..585ffae --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..2da0e8f --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..e717e63 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..6ee39a4 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..e655492 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..f71a1d1 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..5550dc9 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..ad1d419 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..e1e0773 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..a178515 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..acccd94 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..3375f11 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..90697ba --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..a7e5b76 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..ad6cc2e --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..c1ee1db --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..f6a3b8a --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..38968f3 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..33d3284 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..1bc2a27 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..b6989db --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..6ee820c --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..b5b928a --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..27a6eb1 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..f925810 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..92ba054 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..83ff93b --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..49e9c4d --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..a0101df --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..2901330 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..0ecae1c --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..a1790f7 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..354b9e4 --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..0314f9f --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..e7c1aae --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..47d297c --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..fd7492b --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..17bbb8e --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..6e5cc3e --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..c3ee67d --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..ba6405c --- /dev/null +++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..5fa1460 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..e8e67c3 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..06ec20c --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..b94a7b2 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..75b5585 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..d6951e2 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..dd80776 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..ebd6870 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..306bf9a --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..48ef3b1 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..d1ed1b8 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..902cb4a --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..5b1e1aa --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..4a61d27 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..d0d406f --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..5ae3ee2 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..3d58c22 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..2142cd6 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..9f2786b --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..0512ec9 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..ba52d01 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..7f3c0ea --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..52203c3 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..e0805c3 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..8707c97 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..ce6211a --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..c0d2b7f --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..d8dca21 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..7387fa6 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..ff1ff7e --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..6651f9c --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..d3724f1 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..794c936 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..018c120 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..782b75f --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..4713c2f --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..9bbc6d7 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..518007b --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..4fdc27d --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..e04f03e --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..63673b9 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..7041944 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..74f853d --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..9a8fc03 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..c9eb611 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..3143696 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..836432d --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..ebd8339 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..d60e01f --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..12aea76 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..2420ac6 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..c522e53 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..e4c9664 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..d774ee4 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..1ffe69a --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..3705e12 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..a1ce640 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..614ee28 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..85f0d97 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..1ebcc1e --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..74805ea --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..2b094d9 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..a5e921b --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..dfc342a --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..b252878 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..3571464 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..afd31ed --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..adf7ca0 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..7b84b6e --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..255de27 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..1f15592 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..f509535 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..fe4738a --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..a2d1cd5 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..9a8bc4c --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..a652b08 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..905b259 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..997df88 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..b30a34d --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..2802e3f --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..4c0008b --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..6933878 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..73fff0e --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..b692aa8 --- /dev/null +++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..e1bed3d --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..e3e8801 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..7b77e2d --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..739f43d --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..22a3a9c --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..7c38d51 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..d95fedc --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..f039e21 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..478da82 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..bf14c5b --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..228f814 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..d10a5a3 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..491cf44 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..b7806b7 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..9d16656 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..127db40 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..1aa603c --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..13b9ba0 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..08c2ae7 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..694920d --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..825c023 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..322f9a7 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..a3a5b6c --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..df70f12 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..95d7801 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..79302e1 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..5e49f69 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..dc9d794 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..0677763 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..058870b --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..d5aa86e --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..76019e9 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..5087b42 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..beff172 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..dcf0a46 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..3d0fae0 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..a5f3532 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..f809ede --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..2d8407e --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..bcab2d9 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..85a379f --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..f74e046 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..e6721de --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..556a3a0 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..da80d22 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..9537e70 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..e15b420 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..45e71f5 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..c226573 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..cacb044 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..2a28f36 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..0528ad4 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..b27c8e7 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..e79785e --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..82fd2bd --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..40766a3 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..7c241ec --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..2e59042 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..403b700 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..2d58820 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..4976510 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..f2950cc --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..08c1416 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e0_d1.json new file mode 100644 index 0000000..c3d150e --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e1_d1.json new file mode 100644 index 0000000..47d9ddd --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e2_d1.json new file mode 100644 index 0000000..5308eae --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e3_d1.json new file mode 100644 index 0000000..ec26c73 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e4_d1.json new file mode 100644 index 0000000..5edeb55 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e5_d1.json new file mode 100644 index 0000000..c9954dc --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e6_d1.json new file mode 100644 index 0000000..3347da2 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e0_d1.json new file mode 100644 index 0000000..5a081c5 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e1_d1.json new file mode 100644 index 0000000..9cbb5f3 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e2_d1.json new file mode 100644 index 0000000..2772359 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e3_d1.json new file mode 100644 index 0000000..2b11474 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e4_d1.json new file mode 100644 index 0000000..8b80005 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e5_d1.json new file mode 100644 index 0000000..4f292fc --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e6_d1.json new file mode 100644 index 0000000..077503a --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e0_d1.json new file mode 100644 index 0000000..fe72836 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e0_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e1_d1.json new file mode 100644 index 0000000..ca202b8 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e1_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e2_d1.json new file mode 100644 index 0000000..4e8e48b --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e2_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e3_d1.json new file mode 100644 index 0000000..61e1771 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e3_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e4_d1.json new file mode 100644 index 0000000..a6b8dc5 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e4_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e5_d1.json new file mode 100644 index 0000000..9e666a7 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e5_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e6_d1.json new file mode 100644 index 0000000..1f18180 --- /dev/null +++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e6_d1.json @@ -0,0 +1 @@ +{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2} \ No newline at end of file diff --git a/data_provider/__init__.py b/data_provider/__init__.py new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/data_provider/__init__.py @@ -0,0 +1 @@ + diff --git a/data_provider/data_factory.py b/data_provider/data_factory.py new file mode 100644 index 0000000..35abd52 --- /dev/null +++ b/data_provider/data_factory.py @@ -0,0 +1,42 @@ +from torch.utils.data import DataLoader + +from data_provider.data_loader import Dataset_ETT_hour, Dataset_ETT_minute, Dataset_Custom + +data_dict = { + 'ETTh1': Dataset_ETT_hour, + 'ETTh2': Dataset_ETT_hour, + 'ETTm1': Dataset_ETT_minute, + 'ETTm2': Dataset_ETT_minute, + 'custom': Dataset_Custom +} + + +def data_provider(args, flag): + Data = data_dict[args.data] + timeenc = 0 if args.embed != 'timeF' else 1 + + shuffle_flag = False if flag == 'test' else True + drop_last = True + batch_size = args.batch_size + freq = args.freq + + data_set = Data( + args=args, + root_path=args.root_path, + data_path=args.data_path, + flag=flag, + size=[args.seq_len, args.label_len, args.pred_len], + features=args.features, + target=args.target, + timeenc=timeenc, + freq=freq, + seasonal_patterns=args.seasonal_patterns + ) + print(flag, len(data_set)) + data_loader = DataLoader( + data_set, + batch_size=batch_size, + shuffle=shuffle_flag, + num_workers=args.num_workers, + drop_last=drop_last) + return data_set, data_loader diff --git a/data_provider/data_loader.py b/data_provider/data_loader.py new file mode 100644 index 0000000..35681d7 --- /dev/null +++ b/data_provider/data_loader.py @@ -0,0 +1,302 @@ +import os +import warnings + +import pandas as pd +from sklearn.preprocessing import StandardScaler +from torch.utils.data import Dataset + +from utils.augmentation import run_augmentation_single +from utils.timefeatures import time_features + +warnings.filterwarnings('ignore') + + +class Dataset_ETT_hour(Dataset): + def __init__(self, args, root_path, flag='train', size=None, + features='S', data_path='ETTh1.csv', + target='OT', scale=True, timeenc=0, freq='h', seasonal_patterns=None): + # size [seq_len, label_len, pred_len] + self.args = args + # info + if size == None: + self.seq_len = 24 * 4 * 4 + self.label_len = 24 * 4 + self.pred_len = 24 * 4 + else: + self.seq_len = size[0] + self.label_len = size[1] + self.pred_len = size[2] + # init + assert flag in ['train', 'test', 'val'] + type_map = {'train': 0, 'val': 1, 'test': 2} + self.set_type = type_map[flag] + + self.features = features + self.target = target + self.scale = scale + self.timeenc = timeenc + self.freq = freq + + self.root_path = root_path + self.data_path = data_path + self.__read_data__() + + def __read_data__(self): + self.scaler = StandardScaler() + df_raw = pd.read_csv(os.path.join(self.root_path, + self.data_path)) + + border1s = [0, 12 * 30 * 24 - self.seq_len, 12 * 30 * 24 + 4 * 30 * 24 - self.seq_len] + border2s = [12 * 30 * 24, 12 * 30 * 24 + 4 * 30 * 24, 12 * 30 * 24 + 8 * 30 * 24] + border1 = border1s[self.set_type] + border2 = border2s[self.set_type] + + if self.features == 'M' or self.features == 'MS': + cols_data = df_raw.columns[1:] + df_data = df_raw[cols_data] + elif self.features == 'S': + df_data = df_raw[[self.target]] + + if self.scale: + train_data = df_data[border1s[0]:border2s[0]] + self.scaler.fit(train_data.values) + data = self.scaler.transform(df_data.values) + else: + data = df_data.values + + df_stamp = df_raw[['date']][border1:border2] + df_stamp['date'] = pd.to_datetime(df_stamp.date) + if self.timeenc == 0: + df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1) + df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1) + df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1) + df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1) + data_stamp = df_stamp.drop(['date'], 1).values + elif self.timeenc == 1: + data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq) + data_stamp = data_stamp.transpose(1, 0) + + self.data_x = data[border1:border2] + self.data_y = data[border1:border2] + + if self.set_type == 0 and self.args.augmentation_ratio > 0: + self.data_x, self.data_y, augmentation_tags = run_augmentation_single(self.data_x, self.data_y, self.args) + + self.data_stamp = data_stamp + + def __getitem__(self, index): + s_begin = index + s_end = s_begin + self.seq_len + r_begin = s_end - self.label_len + r_end = r_begin + self.label_len + self.pred_len + + seq_x = self.data_x[s_begin:s_end] + seq_y = self.data_y[r_begin:r_end] + seq_x_mark = self.data_stamp[s_begin:s_end] + seq_y_mark = self.data_stamp[r_begin:r_end] + + return seq_x, seq_y, seq_x_mark, seq_y_mark + + def __len__(self): + return len(self.data_x) - self.seq_len - self.pred_len + 1 + + def inverse_transform(self, data): + return self.scaler.inverse_transform(data) + + +class Dataset_ETT_minute(Dataset): + def __init__(self, args, root_path, flag='train', size=None, + features='S', data_path='ETTm1.csv', + target='OT', scale=True, timeenc=0, freq='t', seasonal_patterns=None): + # size [seq_len, label_len, pred_len] + self.args = args + # info + if size == None: + self.seq_len = 24 * 4 * 4 + self.label_len = 24 * 4 + self.pred_len = 24 * 4 + else: + self.seq_len = size[0] + self.label_len = size[1] + self.pred_len = size[2] + # init + assert flag in ['train', 'test', 'val'] + type_map = {'train': 0, 'val': 1, 'test': 2} + self.set_type = type_map[flag] + + self.features = features + self.target = target + self.scale = scale + self.timeenc = timeenc + self.freq = freq + + self.root_path = root_path + self.data_path = data_path + self.__read_data__() + + def __read_data__(self): + self.scaler = StandardScaler() + df_raw = pd.read_csv(os.path.join(self.root_path, + self.data_path)) + + border1s = [0, 12 * 30 * 24 * 4 - self.seq_len, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4 - self.seq_len] + border2s = [12 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 8 * 30 * 24 * 4] + border1 = border1s[self.set_type] + border2 = border2s[self.set_type] + + if self.features == 'M' or self.features == 'MS': + cols_data = df_raw.columns[1:] + df_data = df_raw[cols_data] + elif self.features == 'S': + df_data = df_raw[[self.target]] + + if self.scale: + train_data = df_data[border1s[0]:border2s[0]] + self.scaler.fit(train_data.values) + data = self.scaler.transform(df_data.values) + else: + data = df_data.values + + df_stamp = df_raw[['date']][border1:border2] + df_stamp['date'] = pd.to_datetime(df_stamp.date) + if self.timeenc == 0: + df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1) + df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1) + df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1) + df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1) + df_stamp['minute'] = df_stamp.date.apply(lambda row: row.minute, 1) + df_stamp['minute'] = df_stamp.minute.map(lambda x: x // 15) + data_stamp = df_stamp.drop(['date'], 1).values + elif self.timeenc == 1: + data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq) + data_stamp = data_stamp.transpose(1, 0) + + self.data_x = data[border1:border2] + self.data_y = data[border1:border2] + + if self.set_type == 0 and self.args.augmentation_ratio > 0: + self.data_x, self.data_y, augmentation_tags = run_augmentation_single(self.data_x, self.data_y, self.args) + + self.data_stamp = data_stamp + + def __getitem__(self, index): + s_begin = index + s_end = s_begin + self.seq_len + r_begin = s_end - self.label_len + r_end = r_begin + self.label_len + self.pred_len + + seq_x = self.data_x[s_begin:s_end] + seq_y = self.data_y[r_begin:r_end] + seq_x_mark = self.data_stamp[s_begin:s_end] + seq_y_mark = self.data_stamp[r_begin:r_end] + + return seq_x, seq_y, seq_x_mark, seq_y_mark + + def __len__(self): + return len(self.data_x) - self.seq_len - self.pred_len + 1 + + def inverse_transform(self, data): + return self.scaler.inverse_transform(data) + + +class Dataset_Custom(Dataset): + def __init__(self, args, root_path, flag='train', size=None, + features='S', data_path='ETTh1.csv', + target='OT', scale=True, timeenc=0, freq='h', seasonal_patterns=None): + # size [seq_len, label_len, pred_len] + self.args = args + # info + if size == None: + self.seq_len = 24 * 4 * 4 + self.label_len = 24 * 4 + self.pred_len = 24 * 4 + else: + self.seq_len = size[0] + self.label_len = size[1] + self.pred_len = size[2] + # init + assert flag in ['train', 'test', 'val'] + type_map = {'train': 0, 'val': 1, 'test': 2} + self.set_type = type_map[flag] + + self.features = features + self.target = target + self.scale = scale + self.timeenc = timeenc + self.freq = freq + + self.root_path = root_path + self.data_path = data_path + self.__read_data__() + + def __read_data__(self): + self.scaler = StandardScaler() + df_raw = pd.read_csv(os.path.join(self.root_path, + self.data_path)) + + ''' + df_raw.columns: ['date', ...(other features), target feature] + ''' + cols = list(df_raw.columns) + cols.remove(self.target) + cols.remove('date') + df_raw = df_raw[['date'] + cols + [self.target]] + num_train = int(len(df_raw) * 0.7) + num_test = int(len(df_raw) * 0.2) + num_vali = len(df_raw) - num_train - num_test + border1s = [0, num_train - self.seq_len, len(df_raw) - num_test - self.seq_len] + border2s = [num_train, num_train + num_vali, len(df_raw)] + border1 = border1s[self.set_type] + border2 = border2s[self.set_type] + + if self.features == 'M' or self.features == 'MS': + cols_data = df_raw.columns[1:] + df_data = df_raw[cols_data] + elif self.features == 'S': + df_data = df_raw[[self.target]] + + if self.scale: + train_data = df_data[border1s[0]:border2s[0]] + self.scaler.fit(train_data.values) + data = self.scaler.transform(df_data.values) + else: + data = df_data.values + + df_stamp = df_raw[['date']][border1:border2] + df_stamp['date'] = pd.to_datetime(df_stamp.date) + if self.timeenc == 0: + df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1) + df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1) + df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1) + df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1) + data_stamp = df_stamp.drop(['date'], 1).values + elif self.timeenc == 1: + data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq) + data_stamp = data_stamp.transpose(1, 0) + + self.data_x = data[border1:border2] + self.data_y = data[border1:border2] + + if self.set_type == 0 and self.args.augmentation_ratio > 0: + self.data_x, self.data_y, augmentation_tags = run_augmentation_single(self.data_x, self.data_y, self.args) + + self.data_stamp = data_stamp + + def __getitem__(self, index): + s_begin = index + s_end = s_begin + self.seq_len + r_begin = s_end - self.label_len + r_end = r_begin + self.label_len + self.pred_len + + seq_x = self.data_x[s_begin:s_end] + seq_y = self.data_y[r_begin:r_end] + seq_x_mark = self.data_stamp[s_begin:s_end] + seq_y_mark = self.data_stamp[r_begin:r_end] + + return seq_x, seq_y, seq_x_mark, seq_y_mark + + def __len__(self): + return len(self.data_x) - self.seq_len - self.pred_len + 1 + + def inverse_transform(self, data): + return self.scaler.inverse_transform(data) diff --git a/exp/__init__.py b/exp/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/exp/exp_basic.py b/exp/exp_basic.py new file mode 100644 index 0000000..3d4a838 --- /dev/null +++ b/exp/exp_basic.py @@ -0,0 +1,44 @@ +import os + +import torch + +from models import TEFN, TEFN_ac, TEFN_at + + +class Exp_Basic(object): + def __init__(self, args): + self.args = args + self.model_dict = { + 'TEFN': TEFN, + 'TEFN_ac': TEFN_ac, + 'TEFN_at': TEFN_at + } + self.device = self._acquire_device() + self.model = self._build_model().to(self.device) + + def _build_model(self): + raise NotImplementedError + return None + + def _acquire_device(self): + if self.args.use_gpu: + os.environ["CUDA_VISIBLE_DEVICES"] = str( + self.args.gpu) if not self.args.use_multi_gpu else self.args.devices + device = torch.device('cuda:{}'.format(self.args.gpu)) + print('Use GPU: cuda:{}'.format(self.args.gpu)) + else: + device = torch.device('cpu') + print('Use CPU') + return device + + def _get_data(self): + pass + + def vali(self): + pass + + def train(self): + pass + + def test(self): + pass diff --git a/exp/exp_long_term_forecasting.py b/exp/exp_long_term_forecasting.py new file mode 100644 index 0000000..0c82246 --- /dev/null +++ b/exp/exp_long_term_forecasting.py @@ -0,0 +1,285 @@ +import os +import time +import warnings + +import numpy as np +import torch +import torch.nn as nn +from torch import optim + +from data_provider.data_factory import data_provider +from exp.exp_basic import Exp_Basic +from utils.dtw_metric import accelerated_dtw +from utils.metrics import metric +from utils.tools import EarlyStopping, adjust_learning_rate, visual + +warnings.filterwarnings('ignore') + + +class Exp_Long_Term_Forecast(Exp_Basic): + def __init__(self, args): + super(Exp_Long_Term_Forecast, self).__init__(args) + + def _build_model(self): + model = self.model_dict[self.args.model].Model(self.args).float() + + if self.args.use_multi_gpu and self.args.use_gpu: + model = nn.DataParallel(model, device_ids=self.args.device_ids) + return model + + def _get_data(self, flag): + data_set, data_loader = data_provider(self.args, flag) + return data_set, data_loader + + def _select_optimizer(self): + model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate) + return model_optim + + def _select_criterion(self): + criterion = nn.MSELoss() + return criterion + + def vali(self, vali_data, vali_loader, criterion): + total_loss = [] + self.model.eval() + with torch.no_grad(): + for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(vali_loader): + batch_x = batch_x.float().to(self.device) + batch_y = batch_y.float() + + batch_x_mark = batch_x_mark.float().to(self.device) + batch_y_mark = batch_y_mark.float().to(self.device) + + # decoder input + dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float() + dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device) + # encoder - decoder + if self.args.use_amp: + with torch.cuda.amp.autocast(): + if self.args.output_attention: + outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0] + else: + outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) + else: + if self.args.output_attention: + outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0] + else: + outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) + f_dim = -1 if self.args.features == 'MS' else 0 + outputs = outputs[:, -self.args.pred_len:, f_dim:] + batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device) + + pred = outputs.detach().cpu() + true = batch_y.detach().cpu() + + loss = criterion(pred, true) + + total_loss.append(loss) + total_loss = np.average(total_loss) + self.model.train() + return total_loss + + def train(self, setting): + train_data, train_loader = self._get_data(flag='train') + vali_data, vali_loader = self._get_data(flag='val') + test_data, test_loader = self._get_data(flag='test') + + path = os.path.join(self.args.checkpoints, setting) + if not os.path.exists(path): + os.makedirs(path) + + time_now = time.time() + + train_steps = len(train_loader) + early_stopping = EarlyStopping(patience=self.args.patience, verbose=True) + + model_optim = self._select_optimizer() + criterion = self._select_criterion() + + if self.args.use_amp: + scaler = torch.cuda.amp.GradScaler() + + for epoch in range(self.args.train_epochs): + iter_count = 0 + train_loss = [] + + self.model.train() + epoch_time = time.time() + for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(train_loader): + iter_count += 1 + model_optim.zero_grad() + batch_x = batch_x.float().to(self.device) + batch_y = batch_y.float().to(self.device) + batch_x_mark = batch_x_mark.float().to(self.device) + batch_y_mark = batch_y_mark.float().to(self.device) + + # decoder input + dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float() + dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device) + + # encoder - decoder + if self.args.use_amp: + with torch.cuda.amp.autocast(): + if self.args.output_attention: + outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0] + else: + outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) + + f_dim = -1 if self.args.features == 'MS' else 0 + outputs = outputs[:, -self.args.pred_len:, f_dim:] + batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device) + loss = criterion(outputs, batch_y) + train_loss.append(loss.item()) + else: + if self.args.output_attention: + outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0] + else: + outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) + + f_dim = -1 if self.args.features == 'MS' else 0 + outputs = outputs[:, -self.args.pred_len:, f_dim:] + batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device) + loss = criterion(outputs, batch_y) + train_loss.append(loss.item()) + + if (i + 1) % 100 == 0: + print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item())) + speed = (time.time() - time_now) / iter_count + left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i) + print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time)) + iter_count = 0 + time_now = time.time() + + if self.args.use_amp: + scaler.scale(loss).backward() + scaler.step(model_optim) + scaler.update() + else: + loss.backward() + model_optim.step() + + print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time)) + train_loss = np.average(train_loss) + vali_loss = self.vali(vali_data, vali_loader, criterion) + test_loss = self.vali(test_data, test_loader, criterion) + + print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format( + epoch + 1, train_steps, train_loss, vali_loss, test_loss)) + early_stopping(vali_loss, self.model, path) + if early_stopping.early_stop: + print("Early stopping") + break + + adjust_learning_rate(model_optim, epoch + 1, self.args) + + best_model_path = path + '/' + 'checkpoint.pth' + self.model.load_state_dict(torch.load(best_model_path)) + + return self.model + + def test(self, setting, test=0): + test_data, test_loader = self._get_data(flag='test') + if test: + print('loading model') + self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth'))) + + preds = [] + trues = [] + folder_path = './out/test_results/' + setting + '/' + if not os.path.exists(folder_path): + os.makedirs(folder_path) + + self.model.eval() + with torch.no_grad(): + for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(test_loader): + batch_x = batch_x.float().to(self.device) + batch_y = batch_y.float().to(self.device) + + batch_x_mark = batch_x_mark.float().to(self.device) + batch_y_mark = batch_y_mark.float().to(self.device) + + # decoder input + dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float() + dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device) + # encoder - decoder + if self.args.use_amp: + with torch.cuda.amp.autocast(): + if self.args.output_attention: + outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0] + else: + outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) + else: + if self.args.output_attention: + outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0] + + else: + outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) + + f_dim = -1 if self.args.features == 'MS' else 0 + outputs = outputs[:, -self.args.pred_len:, :] + batch_y = batch_y[:, -self.args.pred_len:, :].to(self.device) + outputs = outputs.detach().cpu().numpy() + batch_y = batch_y.detach().cpu().numpy() + if test_data.scale and self.args.inverse: + shape = outputs.shape + outputs = test_data.inverse_transform(outputs.squeeze(0)).reshape(shape) + batch_y = test_data.inverse_transform(batch_y.squeeze(0)).reshape(shape) + + outputs = outputs[:, :, f_dim:] + batch_y = batch_y[:, :, f_dim:] + + pred = outputs + true = batch_y + + preds.append(pred) + trues.append(true) + if i % 20 == 0: + input = batch_x.detach().cpu().numpy() + if test_data.scale and self.args.inverse: + shape = input.shape + input = test_data.inverse_transform(input.squeeze(0)).reshape(shape) + gt = np.concatenate((input[0, :, -1], true[0, :, -1]), axis=0) + pd = np.concatenate((input[0, :, -1], pred[0, :, -1]), axis=0) + visual(gt, pd, os.path.join(folder_path, str(i) + '.pdf')) + + preds = np.array(preds) + trues = np.array(trues) + print('test shape:', preds.shape, trues.shape) + preds = preds.reshape(-1, preds.shape[-2], preds.shape[-1]) + trues = trues.reshape(-1, trues.shape[-2], trues.shape[-1]) + print('test shape:', preds.shape, trues.shape) + + # result save + folder_path = './out/results/' + setting + '/' + if not os.path.exists(folder_path): + os.makedirs(folder_path) + + # dtw calculation + if self.args.use_dtw: + dtw_list = [] + manhattan_distance = lambda x, y: np.abs(x - y) + for i in range(preds.shape[0]): + x = preds[i].reshape(-1, 1) + y = trues[i].reshape(-1, 1) + if i % 100 == 0: + print("calculating dtw iter:", i) + d, _, _, _ = accelerated_dtw(x, y, dist=manhattan_distance) + dtw_list.append(d) + dtw = np.array(dtw_list).mean() + else: + dtw = -999 + + mae, mse, rmse, mape, mspe = metric(preds, trues) + print('mse:{}, mae:{}, dtw:{}'.format(mse, mae, dtw)) + f = open("./out/result/result_long_term_forecast.txt", 'a') + f.write(setting + " \n") + f.write('mse:{}, mae:{}, dtw:{}'.format(mse, mae, dtw)) + f.write('\n') + f.write('\n') + f.close() + + np.save(folder_path + 'metrics.npy', np.array([mae, mse, rmse, mape, mspe])) + np.save(folder_path + 'pred.npy', preds) + np.save(folder_path + 'true.npy', trues) + + return diff --git a/fig/CBV.png b/fig/CBV.png new file mode 100644 index 0000000..043f390 Binary files /dev/null and b/fig/CBV.png differ diff --git a/fig/TBV.png b/fig/TBV.png new file mode 100644 index 0000000..d2b0cdd Binary files /dev/null and b/fig/TBV.png differ diff --git a/fig/TEFN.png b/fig/TEFN.png new file mode 100644 index 0000000..61d5aac Binary files /dev/null and b/fig/TEFN.png differ diff --git a/fig/bpa.png b/fig/bpa.png new file mode 100644 index 0000000..4b7d406 Binary files /dev/null and b/fig/bpa.png differ diff --git a/fig/inver_conv.png b/fig/inver_conv.png new file mode 100644 index 0000000..93f9f16 Binary files /dev/null and b/fig/inver_conv.png differ diff --git a/fig/ms.png b/fig/ms.png new file mode 100644 index 0000000..38fee29 Binary files /dev/null and b/fig/ms.png differ diff --git a/fig/size.png b/fig/size.png new file mode 100644 index 0000000..42c1e8d Binary files /dev/null and b/fig/size.png differ diff --git a/fig/sota.png b/fig/sota.png new file mode 100644 index 0000000..96cbfc2 Binary files /dev/null and b/fig/sota.png differ diff --git a/fig/var.png b/fig/var.png new file mode 100644 index 0000000..7348b00 Binary files /dev/null and b/fig/var.png differ diff --git a/fig/vr.png b/fig/vr.png new file mode 100644 index 0000000..ba3588d Binary files /dev/null and b/fig/vr.png differ diff --git a/models/TEFN.py b/models/TEFN.py new file mode 100644 index 0000000..24045a9 --- /dev/null +++ b/models/TEFN.py @@ -0,0 +1,65 @@ +import torch +import torch.nn as nn + + +class NormLayer(nn.Module): + def __init__(self): + super(NormLayer, self).__init__() + self.means = None + self.stds = None + + def norm(self, x): + self.means = x.mean(1, keepdim=True).detach() # B x 1 x E + x = x - self.means + self.stds = torch.sqrt(torch.var(x, dim=1, keepdim=True, unbiased=False) + 1e-5).detach() # B x 1 x E + x = x / self.stds + return x + + def denorm(self, x): + x = x * self.stds + self.means + return x + + +class EvidenceMachineKernel(nn.Module): + def __init__(self, C, F): + super(EvidenceMachineKernel, self).__init__() + self.C = C + self.F = 2 ** F + self.C_weight = nn.Parameter(torch.randn(self.C, self.F)) + self.C_bias = nn.Parameter(torch.randn(self.C, self.F)) + + def forward(self, x): + x = torch.einsum('btc,cf->btcf', x, self.C_weight) + self.C_bias + return x + + +class Model(nn.Module): + + def __init__(self, configs): + super(Model, self).__init__() + self.configs = configs + self.task_name = configs.task_name + self.seq_len = configs.seq_len + self.label_len = configs.label_len + self.pred_len = configs.pred_len + if self.task_name.startswith('long_term_forecast') or self.task_name == 'short_term_forecast': + self.nl = NormLayer() + self.predict_linear = nn.Linear( + self.seq_len, self.pred_len + self.seq_len) + self.T_model = EvidenceMachineKernel(self.pred_len + self.seq_len, self.configs.e_layers) + self.C_model = EvidenceMachineKernel(self.configs.enc_in, self.configs.e_layers) + + def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec): + # x_enc [B, T, C] + x = self.nl.norm(x_enc) + # x [B, T, C] + x = self.predict_linear(x.permute(0, 2, 1)).permute(0, 2, 1) + x = self.T_model(x.permute(0, 2, 1)).permute(0, 2, 1, 3) + self.C_model(x) + x = torch.einsum('btcf->btc', x) + x = self.nl.denorm(x) + return x + + def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None): + if self.task_name.startswith('long_term_forecast'): + dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec) + return dec_out[:, -self.pred_len:, :] # [B, L, D] diff --git a/models/TEFN_ac.py b/models/TEFN_ac.py new file mode 100644 index 0000000..74f8095 --- /dev/null +++ b/models/TEFN_ac.py @@ -0,0 +1,64 @@ +import torch +import torch.nn as nn + + +class NormLayer(nn.Module): + def __init__(self): + super(NormLayer, self).__init__() + self.means = None + self.stds = None + + def norm(self, x): + self.means = x.mean(1, keepdim=True).detach() # B x 1 x E + x = x - self.means + self.stds = torch.sqrt(torch.var(x, dim=1, keepdim=True, unbiased=False) + 1e-5).detach() # B x 1 x E + x = x / self.stds + return x + + def denorm(self, x): + x = x * self.stds + self.means + return x + + +class EvidenceMachineKernel(nn.Module): + def __init__(self, C, F): + super(EvidenceMachineKernel, self).__init__() + self.C = C + self.F = 2 ** F + self.C_weight = nn.Parameter(torch.randn(self.C, self.F)) + self.C_bias = nn.Parameter(torch.randn(self.C, self.F)) + + def forward(self, x): + x = torch.einsum('btc,cf->btcf', x, self.C_weight) + self.C_bias + return x + + +class Model(nn.Module): + + def __init__(self, configs): + super(Model, self).__init__() + self.configs = configs + self.task_name = configs.task_name + self.seq_len = configs.seq_len + self.label_len = configs.label_len + self.pred_len = configs.pred_len + if self.task_name.startswith('long_term_forecast') or self.task_name == 'short_term_forecast': + self.nl = NormLayer() + self.predict_linear = nn.Linear( + self.seq_len, self.pred_len + self.seq_len) + self.C_model = EvidenceMachineKernel(self.configs.enc_in, self.configs.e_layers) + + def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec): + # x_enc [B, T, C] + x = self.nl.norm(x_enc) + # x [B, T, C] + x = self.predict_linear(x.permute(0, 2, 1)).permute(0, 2, 1) + x = self.C_model(x) + x = torch.einsum('btcf->btc', x) + x = self.nl.denorm(x) + return x + + def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None): + if self.task_name.startswith('long_term_forecast'): + dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec) + return dec_out[:, -self.pred_len:, :] # [B, L, D] diff --git a/models/TEFN_at.py b/models/TEFN_at.py new file mode 100644 index 0000000..aa0509a --- /dev/null +++ b/models/TEFN_at.py @@ -0,0 +1,64 @@ +import torch +import torch.nn as nn + + +class NormLayer(nn.Module): + def __init__(self): + super(NormLayer, self).__init__() + self.means = None + self.stds = None + + def norm(self, x): + self.means = x.mean(1, keepdim=True).detach() # B x 1 x E + x = x - self.means + self.stds = torch.sqrt(torch.var(x, dim=1, keepdim=True, unbiased=False) + 1e-5).detach() # B x 1 x E + x = x / self.stds + return x + + def denorm(self, x): + x = x * self.stds + self.means + return x + + +class EvidenceMachineKernel(nn.Module): + def __init__(self, C, F): + super(EvidenceMachineKernel, self).__init__() + self.C = C + self.F = 2 ** F + self.C_weight = nn.Parameter(torch.randn(self.C, self.F)) + self.C_bias = nn.Parameter(torch.randn(self.C, self.F)) + + def forward(self, x): + x = torch.einsum('btc,cf->btcf', x, self.C_weight) + self.C_bias + return x + + +class Model(nn.Module): + + def __init__(self, configs): + super(Model, self).__init__() + self.configs = configs + self.task_name = configs.task_name + self.seq_len = configs.seq_len + self.label_len = configs.label_len + self.pred_len = configs.pred_len + if self.task_name.startswith('long_term_forecast') or self.task_name == 'short_term_forecast': + self.nl = NormLayer() + self.predict_linear = nn.Linear( + self.seq_len, self.pred_len + self.seq_len) + self.T_model = EvidenceMachineKernel(self.pred_len + self.seq_len, self.configs.e_layers) + + def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec): + # x_enc [B, T, C] + x = self.nl.norm(x_enc) + # x [B, T, C] + x = self.predict_linear(x.permute(0, 2, 1)).permute(0, 2, 1) + x = self.T_model(x.permute(0, 2, 1)).permute(0, 2, 1, 3) + x = torch.einsum('btcf->btc', x) + x = self.nl.denorm(x) + return x + + def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None): + if self.task_name.startswith('long_term_forecast'): + dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec) + return dec_out[:, -self.pred_len:, :] # [B, L, D] diff --git a/models/__init__.py b/models/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/pull.sh b/pull.sh new file mode 100644 index 0000000..724e698 --- /dev/null +++ b/pull.sh @@ -0,0 +1 @@ +git pull origin master \ No newline at end of file diff --git a/push.sh b/push.sh new file mode 100644 index 0000000..2502b75 --- /dev/null +++ b/push.sh @@ -0,0 +1,4 @@ +git add . +cur=$(date +"%Y-%m-%d %H:%M:%S") +git commit -m "${cur}" +git push origin master \ No newline at end of file diff --git a/readme.md b/readme.md new file mode 100644 index 0000000..e40468b --- /dev/null +++ b/readme.md @@ -0,0 +1,86 @@ +# Time-Evidence Fusion Network (TEFN): A Novel Backbone for Time Series Forecasting + +## Overview +This is the official code implementation project for paper **"Time Evidence Fusion Network: Multi-source View in Long-Term Time Series Forecasting"**. The code implementation refers to [Time-Series-Library](https://github.com/thuml/Time-Series-Library). Thanks very much for [Time-Series-Library](https://github.com/thuml/Time-Series-Library)'s contribution to this project. + +![TEFN](/fig/TEFN.png) +The **Time-Evidence Fusion Network (TEFN)** is a groundbreaking deep learning model designed for long-term time series forecasting. It integrates the principles of information fusion and evidence theory to achieve superior performance in real-world applications where timely predictions are crucial. TEFN introduces the Basic Probability Assignment (BPA) Module, leveraging fuzzy theory, and the Time Evidence Fusion Network to enhance prediction accuracy, stability, and interpretability. + +## Key Features + +- **Information Fusion Perspective**: TEFN addresses time series forecasting from a unique angle, focusing on the fusion of multi-source information to boost prediction accuracy. +![Information Fusion Perspective](/fig/ms.png) +- **BPA Module**: At its core, TEFN incorporates a BPA Module that maps diverse information sources to probability distributions related to the target outcome. This module exploits the interpretability of evidence theory, using fuzzy membership functions to represent uncertainty in predictions. +![BPA](/fig/bpa.png) +![BPA Diagram](./fig/inver_conv.png) +- **Interpretability**: Due to its roots in fuzzy logic, TEFN provides clear insights into the decision-making process, enhancing model explainability. +![Channel dimension interpretability](/fig/CBV.png) +![Time dimension interpretability](/fig/TBV.png) +- **State-of-the-Art Performance**: TEFN demonstrates competitive results, with prediction errors comparable to leading models like PatchTST, while maintaining high efficiency and requiring fewer parameters than complex models such as Dlinear. +![SOTA](/fig/sota.png) +- **Robustness and Stability**: The model showcases resilience to hyperparameter tuning, exhibiting minimal fluctuations even under random selections, ensuring consistent performance across various settings. +![Visualization of Robustness](/fig/vr.png) +![Variance](/fig/var.png) +- **Efficiency**: With optimized training times and a compact model footprint, TEFN is particularly suitable for resource-constrained environments. +![Efficiency](/fig/size.png) + +## Getting Started + +### Requirements + +- Python >= 3.6 +- PyTorch >= 1.7.0 +- Other dependencies listed in `requirements.txt` + +### Installation + +Clone the repository: + +```bash +git clone https://github.com/ztxtech/Time-Evidence-Fusion-Network.git +cd Time-Evidence-Fusion-Network +pip install -r requirements.txt +``` + +### Usage + +### Download Dataset + +You can obtain datasets from [[Google Drive]](https://drive.google.com/drive/folders/13Cg1KYOlzM5C7K8gK8NfC-F3EYxkM3D2?usp=sharing) or [[Baidu Drive]](https://pan.baidu.com/s/1r3KhGd0Q9PJIUZdfEYoymg?pwd=i9iy), Then place the downloaded data in the folder`./dataset`. + +#### Load Config + +The development of this project was modified from [Time-Series-Library](https://github.com/thuml/Time-Series-Library). Thanks very much for [Time-Series-Library](https://github.com/thuml/Time-Series-Library) open source code. + +1. Modify the specific configuration file in `./run_config.py`. + +```python +config_path = '{your chosen config file path}' +``` +2. Run `./run_config.py` directly. +```bash +python run_config.py +``` + +#### Other Operations + +Other related operations refer to [Time-Series-Library](https://github.com/thuml/Time-Series-Library). + + +#### Citation + +If you find TEFN useful in your research, please cite our work as per the citation. + +```bibtex + + +``` + +## Contact + + +If you have any questions or suggestions, feel free to contact: + +Tianxiang Zhan [(zhantianxianguestc@hotmail.com)](mailto:zhantianxianguestc@hotmail.com) + +Or describe it in Issues. \ No newline at end of file diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000..49bb4a3 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,12 @@ +einops==0.4.0 +matplotlib==3.7.0 +numpy==1.23.5 +pandas==1.5.3 +patool==1.12 +reformer-pytorch==1.4.4 +scikit-learn==1.2.2 +scipy==1.10.1 +sktime==0.16.1 +sympy==1.11.1 +torch==1.7.1 +tqdm==4.64.1 \ No newline at end of file diff --git a/run.py b/run.py new file mode 100644 index 0000000..95f1136 --- /dev/null +++ b/run.py @@ -0,0 +1,215 @@ +import argparse +import random + +import numpy as np +import torch + +from exp.exp_long_term_forecasting import Exp_Long_Term_Forecast +from utils.print_args import print_args + + +def get_args(): + parser = argparse.ArgumentParser(description='TEFN') + + # basic config + parser.add_argument('--task_name', type=str, required=True, default='long_term_forecast', + help='task name, options:[long_term_forecast, short_term_forecast, imputation, classification, anomaly_detection]') + parser.add_argument('--is_training', type=int, required=True, default=1, help='status') + parser.add_argument('--model_id', type=str, required=True, default='test', help='model id') + parser.add_argument('--model', type=str, required=True, default='Autoformer', + help='model name, options: [Autoformer, Transformer, TimesNet]') + + # data loader + parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type') + parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file') + parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file') + parser.add_argument('--features', type=str, default='M', + help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate') + parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task') + parser.add_argument('--freq', type=str, default='h', + help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h') + parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints') + + # forecasting task + parser.add_argument('--seq_len', type=int, default=96, help='input sequence length') + parser.add_argument('--label_len', type=int, default=48, help='start token length') + parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length') + parser.add_argument('--seasonal_patterns', type=str, default='Monthly', help='subset for M4') + parser.add_argument('--inverse', action='store_true', help='inverse output data', default=False) + + # inputation task + parser.add_argument('--mask_rate', type=float, default=0.25, help='mask ratio') + + # anomaly detection task + parser.add_argument('--anomaly_ratio', type=float, default=0.25, help='prior anomaly ratio (%)') + + # model define + parser.add_argument('--expand', type=int, default=2, help='expansion factor for Mamba') + parser.add_argument('--d_conv', type=int, default=4, help='conv kernel size for Mamba') + parser.add_argument('--top_k', type=int, default=5, help='for TimesBlock') + parser.add_argument('--num_kernels', type=int, default=6, help='for Inception') + parser.add_argument('--enc_in', type=int, default=7, help='encoder input size') + parser.add_argument('--dec_in', type=int, default=7, help='decoder input size') + parser.add_argument('--c_out', type=int, default=7, help='output size') + parser.add_argument('--d_model', type=int, default=512, help='dimension of model') + parser.add_argument('--n_heads', type=int, default=8, help='num of heads') + parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers') + parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers') + parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn') + parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average') + parser.add_argument('--factor', type=int, default=1, help='attn factor') + parser.add_argument('--distil', action='store_false', + help='whether to use distilling in encoder, using this argument means not using distilling', + default=True) + parser.add_argument('--dropout', type=float, default=0.1, help='dropout') + parser.add_argument('--embed', type=str, default='timeF', + help='time features encoding, options:[timeF, fixed, learned]') + parser.add_argument('--activation', type=str, default='gelu', help='activation') + parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder') + parser.add_argument('--channel_independence', type=int, default=1, + help='0: channel dependence 1: channel independence for FreTS model') + parser.add_argument('--decomp_method', type=str, default='moving_avg', + help='method of series decompsition, only support moving_avg or dft_decomp') + parser.add_argument('--use_norm', type=int, default=1, help='whether to use normalize; True 1 False 0') + parser.add_argument('--down_sampling_layers', type=int, default=0, help='num of down sampling layers') + parser.add_argument('--down_sampling_window', type=int, default=1, help='down sampling window size') + parser.add_argument('--down_sampling_method', type=str, default=None, + help='down sampling method, only support avg, max, conv') + parser.add_argument('--seg_len', type=int, default=48, + help='the length of segmen-wise iteration of SegRNN') + + # optimization + parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers') + parser.add_argument('--itr', type=int, default=1, help='experiments times') + parser.add_argument('--train_epochs', type=int, default=10, help='train epochs') + parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data') + parser.add_argument('--patience', type=int, default=3, help='early stopping patience') + parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate') + parser.add_argument('--des', type=str, default='test', help='exp description') + parser.add_argument('--loss', type=str, default='MSE', help='loss function') + parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate') + parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False) + + # GPU + parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu') + parser.add_argument('--gpu', type=int, default=0, help='gpu') + parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False) + parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus') + + # de-stationary projector params + parser.add_argument('--p_hidden_dims', type=int, nargs='+', default=[128, 128], + help='hidden layer dimensions of projector (List)') + parser.add_argument('--p_hidden_layers', type=int, default=2, help='number of hidden layers in projector') + + # metrics (dtw) + parser.add_argument('--use_dtw', type=bool, default=False, + help='the controller of using dtw metric (dtw is time consuming, not suggested unless necessary)') + + # Augmentation + parser.add_argument('--augmentation_ratio', type=int, default=0, help="How many times to augment") + parser.add_argument('--seed', type=int, default=2, help="Randomization seed") + parser.add_argument('--jitter', default=False, action="store_true", help="Jitter preset augmentation") + parser.add_argument('--scaling', default=False, action="store_true", help="Scaling preset augmentation") + parser.add_argument('--permutation', default=False, action="store_true", + help="Equal Length Permutation preset augmentation") + parser.add_argument('--randompermutation', default=False, action="store_true", + help="Random Length Permutation preset augmentation") + parser.add_argument('--magwarp', default=False, action="store_true", help="Magnitude warp preset augmentation") + parser.add_argument('--timewarp', default=False, action="store_true", help="Time warp preset augmentation") + parser.add_argument('--windowslice', default=False, action="store_true", help="Window slice preset augmentation") + parser.add_argument('--windowwarp', default=False, action="store_true", help="Window warp preset augmentation") + parser.add_argument('--rotation', default=False, action="store_true", help="Rotation preset augmentation") + parser.add_argument('--spawner', default=False, action="store_true", help="SPAWNER preset augmentation") + parser.add_argument('--dtwwarp', default=False, action="store_true", help="DTW warp preset augmentation") + parser.add_argument('--shapedtwwarp', default=False, action="store_true", help="Shape DTW warp preset augmentation") + parser.add_argument('--wdba', default=False, action="store_true", help="Weighted DBA preset augmentation") + parser.add_argument('--discdtw', default=False, action="store_true", + help="Discrimitive DTW warp preset augmentation") + parser.add_argument('--discsdtw', default=False, action="store_true", + help="Discrimitive shapeDTW warp preset augmentation") + parser.add_argument('--extra_tag', type=str, default="", help="Anything extra") + + args = parser.parse_args() + return args + + +if __name__ == '__main__': + fix_seed = 2021 + random.seed(fix_seed) + torch.manual_seed(fix_seed) + np.random.seed(fix_seed) + args = get_args() + args.use_gpu = True if torch.cuda.is_available() else False + + print(torch.cuda.is_available()) + + if args.use_gpu and args.use_multi_gpu: + args.devices = args.devices.replace(' ', '') + device_ids = args.devices.split(',') + args.device_ids = [int(id_) for id_ in device_ids] + args.gpu = args.device_ids[0] + + print('Args in experiment:') + print_args(args) + + if args.task_name == 'long_term_forecast': + Exp = Exp_Long_Term_Forecast + + if args.is_training: + for ii in range(args.itr): + # setting record of experiments + exp = Exp(args) # set experiments + setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_expand{}_dc{}_fc{}_eb{}_dt{}_{}_{}'.format( + args.task_name, + args.model_id, + args.model, + args.data, + args.features, + args.seq_len, + args.label_len, + args.pred_len, + args.d_model, + args.n_heads, + args.e_layers, + args.d_layers, + args.d_ff, + args.expand, + args.d_conv, + args.factor, + args.embed, + args.distil, + args.des, ii) + + print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting)) + exp.train(setting) + + print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting)) + exp.test(setting) + torch.cuda.empty_cache() + else: + ii = 0 + setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_expand{}_dc{}_fc{}_eb{}_dt{}_{}_{}'.format( + args.task_name, + args.model_id, + args.model, + args.data, + args.features, + args.seq_len, + args.label_len, + args.pred_len, + args.d_model, + args.n_heads, + args.e_layers, + args.d_layers, + args.d_ff, + args.expand, + args.d_conv, + args.factor, + args.embed, + args.distil, + args.des, ii) + + exp = Exp(args) # set experiments + print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting)) + exp.test(setting, test=1) + torch.cuda.empty_cache() diff --git a/run_config.py b/run_config.py new file mode 100644 index 0000000..148cd79 --- /dev/null +++ b/run_config.py @@ -0,0 +1,194 @@ +import argparse +import json +import random + +import numpy as np +import torch + +from exp.exp_long_term_forecasting import Exp_Long_Term_Forecast +from utils.print_args import print_args + + +def get_args(): + parser = argparse.ArgumentParser(description='TEFN') + + # model define + parser.add_argument('--expand', type=int, default=2, help='expansion factor for Mamba') + parser.add_argument('--d_conv', type=int, default=4, help='conv kernel size for Mamba') + parser.add_argument('--top_k', type=int, default=5, help='for TimesBlock') + parser.add_argument('--num_kernels', type=int, default=6, help='for Inception') + parser.add_argument('--enc_in', type=int, default=7, help='encoder input size') + parser.add_argument('--dec_in', type=int, default=7, help='decoder input size') + parser.add_argument('--c_out', type=int, default=7, help='output size') + parser.add_argument('--d_model', type=int, default=512, help='dimension of model') + parser.add_argument('--n_heads', type=int, default=8, help='num of heads') + parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers') + parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers') + parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn') + parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average') + parser.add_argument('--factor', type=int, default=1, help='attn factor') + parser.add_argument('--distil', action='store_false', + help='whether to use distilling in encoder, using this argument means not using distilling', + default=True) + parser.add_argument('--dropout', type=float, default=0.1, help='dropout') + parser.add_argument('--embed', type=str, default='timeF', + help='time features encoding, options:[timeF, fixed, learned]') + parser.add_argument('--activation', type=str, default='gelu', help='activation') + parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder') + parser.add_argument('--channel_independence', type=int, default=1, + help='0: channel dependence 1: channel independence for FreTS model') + parser.add_argument('--decomp_method', type=str, default='moving_avg', + help='method of series decompsition, only support moving_avg or dft_decomp') + parser.add_argument('--use_norm', type=int, default=1, help='whether to use normalize; True 1 False 0') + parser.add_argument('--down_sampling_layers', type=int, default=0, help='num of down sampling layers') + parser.add_argument('--down_sampling_window', type=int, default=1, help='down sampling window size') + parser.add_argument('--down_sampling_method', type=str, default=None, + help='down sampling method, only support avg, max, conv') + parser.add_argument('--seg_len', type=int, default=48, + help='the length of segmen-wise iteration of SegRNN') + + # optimization + parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers') + parser.add_argument('--itr', type=int, default=1, help='experiments times') + parser.add_argument('--train_epochs', type=int, default=10, help='train epochs') + parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data') + parser.add_argument('--patience', type=int, default=3, help='early stopping patience') + parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate') + parser.add_argument('--des', type=str, default='test', help='exp description') + parser.add_argument('--loss', type=str, default='MSE', help='loss function') + parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate') + parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False) + + # GPU + parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu') + parser.add_argument('--gpu', type=int, default=0, help='gpu') + parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False) + parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus') + + # de-stationary projector params + parser.add_argument('--p_hidden_dims', type=int, nargs='+', default=[128, 128], + help='hidden layer dimensions of projector (List)') + parser.add_argument('--p_hidden_layers', type=int, default=2, help='number of hidden layers in projector') + + # metrics (dtw) + parser.add_argument('--use_dtw', type=bool, default=False, + help='the controller of using dtw metric (dtw is time consuming, not suggested unless necessary)') + + # Augmentation + parser.add_argument('--augmentation_ratio', type=int, default=0, help="How many times to augment") + parser.add_argument('--seed', type=int, default=2, help="Randomization seed") + parser.add_argument('--jitter', default=False, action="store_true", help="Jitter preset augmentation") + parser.add_argument('--scaling', default=False, action="store_true", help="Scaling preset augmentation") + parser.add_argument('--permutation', default=False, action="store_true", + help="Equal Length Permutation preset augmentation") + parser.add_argument('--randompermutation', default=False, action="store_true", + help="Random Length Permutation preset augmentation") + parser.add_argument('--magwarp', default=False, action="store_true", help="Magnitude warp preset augmentation") + parser.add_argument('--timewarp', default=False, action="store_true", help="Time warp preset augmentation") + parser.add_argument('--windowslice', default=False, action="store_true", help="Window slice preset augmentation") + parser.add_argument('--windowwarp', default=False, action="store_true", help="Window warp preset augmentation") + parser.add_argument('--rotation', default=False, action="store_true", help="Rotation preset augmentation") + parser.add_argument('--spawner', default=False, action="store_true", help="SPAWNER preset augmentation") + parser.add_argument('--dtwwarp', default=False, action="store_true", help="DTW warp preset augmentation") + parser.add_argument('--shapedtwwarp', default=False, action="store_true", help="Shape DTW warp preset augmentation") + parser.add_argument('--wdba', default=False, action="store_true", help="Weighted DBA preset augmentation") + parser.add_argument('--discdtw', default=False, action="store_true", + help="Discrimitive DTW warp preset augmentation") + parser.add_argument('--discsdtw', default=False, action="store_true", + help="Discrimitive shapeDTW warp preset augmentation") + parser.add_argument('--extra_tag', type=str, default="", help="Anything extra") + + args = parser.parse_args() + return args + + +def load_config(config_path): + args = get_args() + with open(config_path, 'r') as f: + args_tmp = json.loads(f.read()) + for k, v in args_tmp.items(): + setattr(args, k, v) + return args + + +if __name__ == '__main__': + fix_seed = 2021 + random.seed(fix_seed) + torch.manual_seed(fix_seed) + np.random.seed(fix_seed) + config_path = '{your chosen config file path}' + args = load_config(config_path) + args.use_gpu = True if torch.cuda.is_available() else False + + print(torch.cuda.is_available()) + + if args.use_gpu and args.use_multi_gpu: + args.devices = args.devices.replace(' ', '') + device_ids = args.devices.split(',') + args.device_ids = [int(id_) for id_ in device_ids] + args.gpu = args.device_ids[0] + + print('Args in experiment:') + print_args(args) + + if args.task_name == 'long_term_forecast': + Exp = Exp_Long_Term_Forecast + + if args.is_training: + for ii in range(args.itr): + # setting record of experiments + exp = Exp(args) # set experiments + setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_expand{}_dc{}_fc{}_eb{}_dt{}_{}_{}'.format( + args.task_name, + args.model_id, + args.model, + args.data, + args.features, + args.seq_len, + args.label_len, + args.pred_len, + args.d_model, + args.n_heads, + args.e_layers, + args.d_layers, + args.d_ff, + args.expand, + args.d_conv, + args.factor, + args.embed, + args.distil, + args.des, ii) + + print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting)) + exp.train(setting) + + print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting)) + exp.test(setting) + torch.cuda.empty_cache() + else: + ii = 0 + setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_expand{}_dc{}_fc{}_eb{}_dt{}_{}_{}'.format( + args.task_name, + args.model_id, + args.model, + args.data, + args.features, + args.seq_len, + args.label_len, + args.pred_len, + args.d_model, + args.n_heads, + args.e_layers, + args.d_layers, + args.d_ff, + args.expand, + args.d_conv, + args.factor, + args.embed, + args.distil, + args.des, ii) + + exp = Exp(args) # set experiments + print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting)) + exp.test(setting, test=1) + torch.cuda.empty_cache() diff --git a/utils/__init__.py b/utils/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/utils/augmentation.py b/utils/augmentation.py new file mode 100644 index 0000000..64b194d --- /dev/null +++ b/utils/augmentation.py @@ -0,0 +1,416 @@ +import numpy as np +from tqdm import tqdm + +def jitter(x, sigma=0.03): + # https://arxiv.org/pdf/1706.00527.pdf + return x + np.random.normal(loc=0., scale=sigma, size=x.shape) + + +def scaling(x, sigma=0.1): + # https://arxiv.org/pdf/1706.00527.pdf + factor = np.random.normal(loc=1., scale=sigma, size=(x.shape[0],x.shape[2])) + return np.multiply(x, factor[:,np.newaxis,:]) + +def rotation(x): + x = np.array(x) + flip = np.random.choice([-1, 1], size=(x.shape[0],x.shape[2])) + rotate_axis = np.arange(x.shape[2]) + np.random.shuffle(rotate_axis) + return flip[:,np.newaxis,:] * x[:,:,rotate_axis] + +def permutation(x, max_segments=5, seg_mode="equal"): + orig_steps = np.arange(x.shape[1]) + + num_segs = np.random.randint(1, max_segments, size=(x.shape[0])) + + ret = np.zeros_like(x) + for i, pat in enumerate(x): + if num_segs[i] > 1: + if seg_mode == "random": + split_points = np.random.choice(x.shape[1]-2, num_segs[i]-1, replace=False) + split_points.sort() + splits = np.split(orig_steps, split_points) + else: + splits = np.array_split(orig_steps, num_segs[i]) + warp = np.concatenate(np.random.permutation(splits)).ravel() + # ? Question: What is the point of making segments? + # for i in range(len(splits)): + # permute = np.random.permutation(splits[i]) + + + ret[i] = pat[warp] + else: + ret[i] = pat + return ret + +def magnitude_warp(x, sigma=0.2, knot=4): + from scipy.interpolate import CubicSpline + orig_steps = np.arange(x.shape[1]) + + random_warps = np.random.normal(loc=1.0, scale=sigma, size=(x.shape[0], knot+2, x.shape[2])) + warp_steps = (np.ones((x.shape[2],1))*(np.linspace(0, x.shape[1]-1., num=knot+2))).T + ret = np.zeros_like(x) + for i, pat in enumerate(x): + warper = np.array([CubicSpline(warp_steps[:,dim], random_warps[i,:,dim])(orig_steps) for dim in range(x.shape[2])]).T + ret[i] = pat * warper + + return ret + +def time_warp(x, sigma=0.2, knot=4): + from scipy.interpolate import CubicSpline + orig_steps = np.arange(x.shape[1]) + + random_warps = np.random.normal(loc=1.0, scale=sigma, size=(x.shape[0], knot+2, x.shape[2])) + warp_steps = (np.ones((x.shape[2],1))*(np.linspace(0, x.shape[1]-1., num=knot+2))).T + + ret = np.zeros_like(x) + for i, pat in enumerate(x): + for dim in range(x.shape[2]): + time_warp = CubicSpline(warp_steps[:,dim], warp_steps[:,dim] * random_warps[i,:,dim])(orig_steps) + scale = (x.shape[1]-1)/time_warp[-1] + ret[i,:,dim] = np.interp(orig_steps, np.clip(scale*time_warp, 0, x.shape[1]-1), pat[:,dim]).T + return ret + +def window_slice(x, reduce_ratio=0.9): + # https://halshs.archives-ouvertes.fr/halshs-01357973/document + target_len = np.ceil(reduce_ratio*x.shape[1]).astype(int) + if target_len >= x.shape[1]: + return x + starts = np.random.randint(low=0, high=x.shape[1]-target_len, size=(x.shape[0])).astype(int) + ends = (target_len + starts).astype(int) + + ret = np.zeros_like(x) + for i, pat in enumerate(x): + for dim in range(x.shape[2]): + ret[i,:,dim] = np.interp(np.linspace(0, target_len, num=x.shape[1]), np.arange(target_len), pat[starts[i]:ends[i],dim]).T + return ret + +def window_warp(x, window_ratio=0.1, scales=[0.5, 2.]): + # https://halshs.archives-ouvertes.fr/halshs-01357973/document + warp_scales = np.random.choice(scales, x.shape[0]) + warp_size = np.ceil(window_ratio*x.shape[1]).astype(int) + window_steps = np.arange(warp_size) + + window_starts = np.random.randint(low=1, high=x.shape[1]-warp_size-1, size=(x.shape[0])).astype(int) + window_ends = (window_starts + warp_size).astype(int) + + ret = np.zeros_like(x) + for i, pat in enumerate(x): + for dim in range(x.shape[2]): + start_seg = pat[:window_starts[i],dim] + window_seg = np.interp(np.linspace(0, warp_size-1, num=int(warp_size*warp_scales[i])), window_steps, pat[window_starts[i]:window_ends[i],dim]) + end_seg = pat[window_ends[i]:,dim] + warped = np.concatenate((start_seg, window_seg, end_seg)) + ret[i,:,dim] = np.interp(np.arange(x.shape[1]), np.linspace(0, x.shape[1]-1., num=warped.size), warped).T + return ret + +def spawner(x, labels, sigma=0.05, verbose=0): + # https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983028/ + # use verbose=-1 to turn off warnings + # use verbose=1 to print out figures + + import utils.dtw as dtw + random_points = np.random.randint(low=1, high=x.shape[1]-1, size=x.shape[0]) + window = np.ceil(x.shape[1] / 10.).astype(int) + orig_steps = np.arange(x.shape[1]) + l = np.argmax(labels, axis=1) if labels.ndim > 1 else labels + + ret = np.zeros_like(x) + # for i, pat in enumerate(tqdm(x)): + for i, pat in enumerate(x): + # guarentees that same one isnt selected + choices = np.delete(np.arange(x.shape[0]), i) + # remove ones of different classes + choices = np.where(l[choices] == l[i])[0] + if choices.size > 0: + random_sample = x[np.random.choice(choices)] + # SPAWNER splits the path into two randomly + path1 = dtw.dtw(pat[:random_points[i]], random_sample[:random_points[i]], dtw.RETURN_PATH, slope_constraint="symmetric", window=window) + path2 = dtw.dtw(pat[random_points[i]:], random_sample[random_points[i]:], dtw.RETURN_PATH, slope_constraint="symmetric", window=window) + combined = np.concatenate((np.vstack(path1), np.vstack(path2+random_points[i])), axis=1) + if verbose: + # print(random_points[i]) + dtw_value, cost, DTW_map, path = dtw.dtw(pat, random_sample, return_flag = dtw.RETURN_ALL, slope_constraint=slope_constraint, window=window) + dtw.draw_graph1d(cost, DTW_map, path, pat, random_sample) + dtw.draw_graph1d(cost, DTW_map, combined, pat, random_sample) + mean = np.mean([pat[combined[0]], random_sample[combined[1]]], axis=0) + for dim in range(x.shape[2]): + ret[i,:,dim] = np.interp(orig_steps, np.linspace(0, x.shape[1]-1., num=mean.shape[0]), mean[:,dim]).T + else: + # if verbose > -1: + # print("There is only one pattern of class {}, skipping pattern average".format(l[i])) + ret[i,:] = pat + return jitter(ret, sigma=sigma) + +def wdba(x, labels, batch_size=6, slope_constraint="symmetric", use_window=True, verbose=0): + # https://ieeexplore.ieee.org/document/8215569 + # use verbose = -1 to turn off warnings + # slope_constraint is for DTW. "symmetric" or "asymmetric" + x = np.array(x) + import utils.dtw as dtw + + if use_window: + window = np.ceil(x.shape[1] / 10.).astype(int) + else: + window = None + orig_steps = np.arange(x.shape[1]) + l = np.argmax(labels, axis=1) if labels.ndim > 1 else labels + + ret = np.zeros_like(x) + # for i in tqdm(range(ret.shape[0])): + for i in range(ret.shape[0]): + # get the same class as i + choices = np.where(l == l[i])[0] + if choices.size > 0: + # pick random intra-class pattern + k = min(choices.size, batch_size) + random_prototypes = x[np.random.choice(choices, k, replace=False)] + + # calculate dtw between all + dtw_matrix = np.zeros((k, k)) + for p, prototype in enumerate(random_prototypes): + for s, sample in enumerate(random_prototypes): + if p == s: + dtw_matrix[p, s] = 0. + else: + dtw_matrix[p, s] = dtw.dtw(prototype, sample, dtw.RETURN_VALUE, slope_constraint=slope_constraint, window=window) + + # get medoid + medoid_id = np.argsort(np.sum(dtw_matrix, axis=1))[0] + nearest_order = np.argsort(dtw_matrix[medoid_id]) + medoid_pattern = random_prototypes[medoid_id] + + # start weighted DBA + average_pattern = np.zeros_like(medoid_pattern) + weighted_sums = np.zeros((medoid_pattern.shape[0])) + for nid in nearest_order: + if nid == medoid_id or dtw_matrix[medoid_id, nearest_order[1]] == 0.: + average_pattern += medoid_pattern + weighted_sums += np.ones_like(weighted_sums) + else: + path = dtw.dtw(medoid_pattern, random_prototypes[nid], dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window) + dtw_value = dtw_matrix[medoid_id, nid] + warped = random_prototypes[nid, path[1]] + weight = np.exp(np.log(0.5)*dtw_value/dtw_matrix[medoid_id, nearest_order[1]]) + average_pattern[path[0]] += weight * warped + weighted_sums[path[0]] += weight + + ret[i,:] = average_pattern / weighted_sums[:,np.newaxis] + else: + # if verbose > -1: + # print("There is only one pattern of class {}, skipping pattern average".format(l[i])) + ret[i,:] = x[i] + return ret + +# Proposed + +def random_guided_warp(x, labels, slope_constraint="symmetric", use_window=True, dtw_type="normal", verbose=0): + # use verbose = -1 to turn off warnings + # slope_constraint is for DTW. "symmetric" or "asymmetric" + # dtw_type is for shapeDTW or DTW. "normal" or "shape" + + import utils.dtw as dtw + + if use_window: + window = np.ceil(x.shape[1] / 10.).astype(int) + else: + window = None + orig_steps = np.arange(x.shape[1]) + l = np.argmax(labels, axis=1) if labels.ndim > 1 else labels + + ret = np.zeros_like(x) + # for i, pat in enumerate(tqdm(x)): + for i, pat in enumerate(x): + # guarentees that same one isnt selected + choices = np.delete(np.arange(x.shape[0]), i) + # remove ones of different classes + choices = np.where(l[choices] == l[i])[0] + if choices.size > 0: + # pick random intra-class pattern + random_prototype = x[np.random.choice(choices)] + + if dtw_type == "shape": + path = dtw.shape_dtw(random_prototype, pat, dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window) + else: + path = dtw.dtw(random_prototype, pat, dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window) + + # Time warp + warped = pat[path[1]] + for dim in range(x.shape[2]): + ret[i,:,dim] = np.interp(orig_steps, np.linspace(0, x.shape[1]-1., num=warped.shape[0]), warped[:,dim]).T + else: + # if verbose > -1: + # print("There is only one pattern of class {}, skipping timewarping".format(l[i])) + ret[i,:] = pat + return ret + +def random_guided_warp_shape(x, labels, slope_constraint="symmetric", use_window=True): + return random_guided_warp(x, labels, slope_constraint, use_window, dtw_type="shape") + +def discriminative_guided_warp(x, labels, batch_size=6, slope_constraint="symmetric", use_window=True, dtw_type="normal", use_variable_slice=True, verbose=0): + # use verbose = -1 to turn off warnings + # slope_constraint is for DTW. "symmetric" or "asymmetric" + # dtw_type is for shapeDTW or DTW. "normal" or "shape" + + import utils.dtw as dtw + + if use_window: + window = np.ceil(x.shape[1] / 10.).astype(int) + else: + window = None + orig_steps = np.arange(x.shape[1]) + l = np.argmax(labels, axis=1) if labels.ndim > 1 else labels + + positive_batch = np.ceil(batch_size / 2).astype(int) + negative_batch = np.floor(batch_size / 2).astype(int) + + ret = np.zeros_like(x) + warp_amount = np.zeros(x.shape[0]) + # for i, pat in enumerate(tqdm(x)): + for i, pat in enumerate(x): + # guarentees that same one isnt selected + choices = np.delete(np.arange(x.shape[0]), i) + + # remove ones of different classes + positive = np.where(l[choices] == l[i])[0] + negative = np.where(l[choices] != l[i])[0] + + if positive.size > 0 and negative.size > 0: + pos_k = min(positive.size, positive_batch) + neg_k = min(negative.size, negative_batch) + positive_prototypes = x[np.random.choice(positive, pos_k, replace=False)] + negative_prototypes = x[np.random.choice(negative, neg_k, replace=False)] + + # vector embedding and nearest prototype in one + pos_aves = np.zeros((pos_k)) + neg_aves = np.zeros((pos_k)) + if dtw_type == "shape": + for p, pos_prot in enumerate(positive_prototypes): + for ps, pos_samp in enumerate(positive_prototypes): + if p != ps: + pos_aves[p] += (1./(pos_k-1.))*dtw.shape_dtw(pos_prot, pos_samp, dtw.RETURN_VALUE, slope_constraint=slope_constraint, window=window) + for ns, neg_samp in enumerate(negative_prototypes): + neg_aves[p] += (1./neg_k)*dtw.shape_dtw(pos_prot, neg_samp, dtw.RETURN_VALUE, slope_constraint=slope_constraint, window=window) + selected_id = np.argmax(neg_aves - pos_aves) + path = dtw.shape_dtw(positive_prototypes[selected_id], pat, dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window) + else: + for p, pos_prot in enumerate(positive_prototypes): + for ps, pos_samp in enumerate(positive_prototypes): + if p != ps: + pos_aves[p] += (1./(pos_k-1.))*dtw.dtw(pos_prot, pos_samp, dtw.RETURN_VALUE, slope_constraint=slope_constraint, window=window) + for ns, neg_samp in enumerate(negative_prototypes): + neg_aves[p] += (1./neg_k)*dtw.dtw(pos_prot, neg_samp, dtw.RETURN_VALUE, slope_constraint=slope_constraint, window=window) + selected_id = np.argmax(neg_aves - pos_aves) + path = dtw.dtw(positive_prototypes[selected_id], pat, dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window) + + # Time warp + warped = pat[path[1]] + warp_path_interp = np.interp(orig_steps, np.linspace(0, x.shape[1]-1., num=warped.shape[0]), path[1]) + warp_amount[i] = np.sum(np.abs(orig_steps-warp_path_interp)) + for dim in range(x.shape[2]): + ret[i,:,dim] = np.interp(orig_steps, np.linspace(0, x.shape[1]-1., num=warped.shape[0]), warped[:,dim]).T + else: + # if verbose > -1: + # print("There is only one pattern of class {}".format(l[i])) + ret[i,:] = pat + warp_amount[i] = 0. + if use_variable_slice: + max_warp = np.max(warp_amount) + if max_warp == 0: + # unchanged + ret = window_slice(ret, reduce_ratio=0.9) + else: + for i, pat in enumerate(ret): + # Variable Sllicing + ret[i] = window_slice(pat[np.newaxis,:,:], reduce_ratio=0.9+0.1*warp_amount[i]/max_warp)[0] + return ret + +def discriminative_guided_warp_shape(x, labels, batch_size=6, slope_constraint="symmetric", use_window=True): + return discriminative_guided_warp(x, labels, batch_size, slope_constraint, use_window, dtw_type="shape") + + +def run_augmentation(x, y, args): + print("Augmenting %s"%args.data) + np.random.seed(args.seed) + x_aug = x + y_aug = y + if args.augmentation_ratio > 0: + augmentation_tags = "%d"%args.augmentation_ratio + for n in range(args.augmentation_ratio): + x_temp, augmentation_tags = augment(x, y, args) + x_aug = np.append(x_aug, x_temp, axis=0) + y_aug = np.append(y_aug, y, axis=0) + print("Round %d: %s done"%(n, augmentation_tags)) + if args.extra_tag: + augmentation_tags += "_"+args.extra_tag + else: + augmentation_tags = args.extra_tag + return x_aug, y_aug, augmentation_tags + +def run_augmentation_single(x, y, args): + # print("Augmenting %s"%args.data) + np.random.seed(args.seed) + x_aug = x + y_aug = y + if args.augmentation_ratio > 0: + augmentation_tags = "%d"%args.augmentation_ratio + for n in range(args.augmentation_ratio): + x_temp, augmentation_tags = augment(x, y, args) + x_aug =x_temp + # print("Round %d: %s done"%(n, augmentation_tags)) + if args.extra_tag: + augmentation_tags += "_"+args.extra_tag + else: + augmentation_tags = args.extra_tag + return x_aug, y_aug, augmentation_tags + + +def augment(x, y, args): + import utils.augmentation as aug + augmentation_tags = "" + if args.jitter: + x = aug.jitter(x) + augmentation_tags += "_jitter" + if args.scaling: + x = aug.scaling(x) + augmentation_tags += "_scaling" + if args.rotation: + x = aug.rotation(x) + augmentation_tags += "_rotation" + if args.permutation: + x = aug.permutation(x) + augmentation_tags += "_permutation" + if args.randompermutation: + x = aug.permutation(x, seg_mode="random") + augmentation_tags += "_randomperm" + if args.magwarp: + x = aug.magnitude_warp(x) + augmentation_tags += "_magwarp" + if args.timewarp: + x = aug.time_warp(x) + augmentation_tags += "_timewarp" + if args.windowslice: + x = aug.window_slice(x) + augmentation_tags += "_windowslice" + if args.windowwarp: + x = aug.window_warp(x) + augmentation_tags += "_windowwarp" + if args.spawner: + x = aug.spawner(x, y) + augmentation_tags += "_spawner" + if args.dtwwarp: + x = aug.random_guided_warp(x, y) + augmentation_tags += "_rgw" + if args.shapedtwwarp: + x = aug.random_guided_warp_shape(x, y) + augmentation_tags += "_rgws" + if args.wdba: + x = aug.wdba(x, y) + augmentation_tags += "_wdba" + if args.discdtw: + x = aug.discriminative_guided_warp(x, y) + augmentation_tags += "_dgw" + if args.discsdtw: + x = aug.discriminative_guided_warp_shape(x, y) + augmentation_tags += "_dgws" + return x, augmentation_tags diff --git a/utils/dtw.py b/utils/dtw.py new file mode 100644 index 0000000..941eae8 --- /dev/null +++ b/utils/dtw.py @@ -0,0 +1,223 @@ +__author__ = 'Brian Iwana' + +import numpy as np +import math +import sys + +RETURN_VALUE = 0 +RETURN_PATH = 1 +RETURN_ALL = -1 + +# Core DTW +def _traceback(DTW, slope_constraint): + i, j = np.array(DTW.shape) - 1 + p, q = [i-1], [j-1] + + if slope_constraint == "asymmetric": + while (i > 1): + tb = np.argmin((DTW[i-1, j], DTW[i-1, j-1], DTW[i-1, j-2])) + + if (tb == 0): + i = i - 1 + elif (tb == 1): + i = i - 1 + j = j - 1 + elif (tb == 2): + i = i - 1 + j = j - 2 + + p.insert(0, i-1) + q.insert(0, j-1) + elif slope_constraint == "symmetric": + while (i > 1 or j > 1): + tb = np.argmin((DTW[i-1, j-1], DTW[i-1, j], DTW[i, j-1])) + + if (tb == 0): + i = i - 1 + j = j - 1 + elif (tb == 1): + i = i - 1 + elif (tb == 2): + j = j - 1 + + p.insert(0, i-1) + q.insert(0, j-1) + else: + sys.exit("Unknown slope constraint %s"%slope_constraint) + + return (np.array(p), np.array(q)) + +def dtw(prototype, sample, return_flag = RETURN_VALUE, slope_constraint="asymmetric", window=None): + """ Computes the DTW of two sequences. + :param prototype: np array [0..b] + :param sample: np array [0..t] + :param extended: bool + """ + p = prototype.shape[0] + assert p != 0, "Prototype empty!" + s = sample.shape[0] + assert s != 0, "Sample empty!" + + if window is None: + window = s + + cost = np.full((p, s), np.inf) + for i in range(p): + start = max(0, i-window) + end = min(s, i+window)+1 + cost[i,start:end]=np.linalg.norm(sample[start:end] - prototype[i], axis=1) + + DTW = _cummulative_matrix(cost, slope_constraint, window) + + if return_flag == RETURN_ALL: + return DTW[-1,-1], cost, DTW[1:,1:], _traceback(DTW, slope_constraint) + elif return_flag == RETURN_PATH: + return _traceback(DTW, slope_constraint) + else: + return DTW[-1,-1] + +def _cummulative_matrix(cost, slope_constraint, window): + p = cost.shape[0] + s = cost.shape[1] + + # Note: DTW is one larger than cost and the original patterns + DTW = np.full((p+1, s+1), np.inf) + + DTW[0, 0] = 0.0 + + if slope_constraint == "asymmetric": + for i in range(1, p+1): + if i <= window+1: + DTW[i,1] = cost[i-1,0] + min(DTW[i-1,0], DTW[i-1,1]) + for j in range(max(2, i-window), min(s, i+window)+1): + DTW[i,j] = cost[i-1,j-1] + min(DTW[i-1,j-2], DTW[i-1,j-1], DTW[i-1,j]) + elif slope_constraint == "symmetric": + for i in range(1, p+1): + for j in range(max(1, i-window), min(s, i+window)+1): + DTW[i,j] = cost[i-1,j-1] + min(DTW[i-1,j-1], DTW[i,j-1], DTW[i-1,j]) + else: + sys.exit("Unknown slope constraint %s"%slope_constraint) + + return DTW + +def shape_dtw(prototype, sample, return_flag = RETURN_VALUE, slope_constraint="asymmetric", window=None, descr_ratio=0.05): + """ Computes the shapeDTW of two sequences. + :param prototype: np array [0..b] + :param sample: np array [0..t] + :param extended: bool + """ + # shapeDTW + # https://www.sciencedirect.com/science/article/pii/S0031320317303710 + + p = prototype.shape[0] + assert p != 0, "Prototype empty!" + s = sample.shape[0] + assert s != 0, "Sample empty!" + + if window is None: + window = s + + p_feature_len = np.clip(np.round(p * descr_ratio), 5, 100).astype(int) + s_feature_len = np.clip(np.round(s * descr_ratio), 5, 100).astype(int) + + # padding + p_pad_front = (np.ceil(p_feature_len / 2.)).astype(int) + p_pad_back = (np.floor(p_feature_len / 2.)).astype(int) + s_pad_front = (np.ceil(s_feature_len / 2.)).astype(int) + s_pad_back = (np.floor(s_feature_len / 2.)).astype(int) + + prototype_pad = np.pad(prototype, ((p_pad_front, p_pad_back), (0, 0)), mode="edge") + sample_pad = np.pad(sample, ((s_pad_front, s_pad_back), (0, 0)), mode="edge") + p_p = prototype_pad.shape[0] + s_p = sample_pad.shape[0] + + cost = np.full((p, s), np.inf) + for i in range(p): + for j in range(max(0, i-window), min(s, i+window)): + cost[i, j] = np.linalg.norm(sample_pad[j:j+s_feature_len] - prototype_pad[i:i+p_feature_len]) + + DTW = _cummulative_matrix(cost, slope_constraint=slope_constraint, window=window) + + if return_flag == RETURN_ALL: + return DTW[-1,-1], cost, DTW[1:,1:], _traceback(DTW, slope_constraint) + elif return_flag == RETURN_PATH: + return _traceback(DTW, slope_constraint) + else: + return DTW[-1,-1] + +# Draw helpers +def draw_graph2d(cost, DTW, path, prototype, sample): + import matplotlib.pyplot as plt + plt.figure(figsize=(12, 8)) + # plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) + + #cost + plt.subplot(2, 3, 1) + plt.imshow(cost.T, cmap=plt.cm.gray, interpolation='none', origin='lower') + plt.plot(path[0], path[1], 'y') + plt.xlim((-0.5, cost.shape[0]-0.5)) + plt.ylim((-0.5, cost.shape[0]-0.5)) + + #dtw + plt.subplot(2, 3, 2) + plt.imshow(DTW.T, cmap=plt.cm.gray, interpolation='none', origin='lower') + plt.plot(path[0]+1, path[1]+1, 'y') + plt.xlim((-0.5, DTW.shape[0]-0.5)) + plt.ylim((-0.5, DTW.shape[0]-0.5)) + + #prototype + plt.subplot(2, 3, 4) + plt.plot(prototype[:,0], prototype[:,1], 'b-o') + + #connection + plt.subplot(2, 3, 5) + for i in range(0,path[0].shape[0]): + plt.plot([prototype[path[0][i],0], sample[path[1][i],0]],[prototype[path[0][i],1], sample[path[1][i],1]], 'y-') + plt.plot(sample[:,0], sample[:,1], 'g-o') + plt.plot(prototype[:,0], prototype[:,1], 'b-o') + + #sample + plt.subplot(2, 3, 6) + plt.plot(sample[:,0], sample[:,1], 'g-o') + + plt.tight_layout() + plt.show() + +def draw_graph1d(cost, DTW, path, prototype, sample): + import matplotlib.pyplot as plt + plt.figure(figsize=(12, 8)) + # plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) + p_steps = np.arange(prototype.shape[0]) + s_steps = np.arange(sample.shape[0]) + + #cost + plt.subplot(2, 3, 1) + plt.imshow(cost.T, cmap=plt.cm.gray, interpolation='none', origin='lower') + plt.plot(path[0], path[1], 'y') + plt.xlim((-0.5, cost.shape[0]-0.5)) + plt.ylim((-0.5, cost.shape[0]-0.5)) + + #dtw + plt.subplot(2, 3, 2) + plt.imshow(DTW.T, cmap=plt.cm.gray, interpolation='none', origin='lower') + plt.plot(path[0]+1, path[1]+1, 'y') + plt.xlim((-0.5, DTW.shape[0]-0.5)) + plt.ylim((-0.5, DTW.shape[0]-0.5)) + + #prototype + plt.subplot(2, 3, 4) + plt.plot(p_steps, prototype[:,0], 'b-o') + + #connection + plt.subplot(2, 3, 5) + for i in range(0,path[0].shape[0]): + plt.plot([path[0][i], path[1][i]],[prototype[path[0][i],0], sample[path[1][i],0]], 'y-') + plt.plot(p_steps, sample[:,0], 'g-o') + plt.plot(s_steps, prototype[:,0], 'b-o') + + #sample + plt.subplot(2, 3, 6) + plt.plot(s_steps, sample[:,0], 'g-o') + + plt.tight_layout() + plt.show() \ No newline at end of file diff --git a/utils/dtw_metric.py b/utils/dtw_metric.py new file mode 100644 index 0000000..5ab39bf --- /dev/null +++ b/utils/dtw_metric.py @@ -0,0 +1,156 @@ +from numpy import array, zeros, full, argmin, inf, ndim +from scipy.spatial.distance import cdist +from math import isinf + + +def dtw(x, y, dist, warp=1, w=inf, s=1.0): + """ + Computes Dynamic Time Warping (DTW) of two sequences. + + :param array x: N1*M array + :param array y: N2*M array + :param func dist: distance used as cost measure + :param int warp: how many shifts are computed. + :param int w: window size limiting the maximal distance between indices of matched entries |i,j|. + :param float s: weight applied on off-diagonal moves of the path. As s gets larger, the warping path is increasingly biased towards the diagonal + Returns the minimum distance, the cost matrix, the accumulated cost matrix, and the wrap path. + """ + assert len(x) + assert len(y) + assert isinf(w) or (w >= abs(len(x) - len(y))) + assert s > 0 + r, c = len(x), len(y) + if not isinf(w): + D0 = full((r + 1, c + 1), inf) + for i in range(1, r + 1): + D0[i, max(1, i - w):min(c + 1, i + w + 1)] = 0 + D0[0, 0] = 0 + else: + D0 = zeros((r + 1, c + 1)) + D0[0, 1:] = inf + D0[1:, 0] = inf + D1 = D0[1:, 1:] # view + for i in range(r): + for j in range(c): + if (isinf(w) or (max(0, i - w) <= j <= min(c, i + w))): + D1[i, j] = dist(x[i], y[j]) + C = D1.copy() + jrange = range(c) + for i in range(r): + if not isinf(w): + jrange = range(max(0, i - w), min(c, i + w + 1)) + for j in jrange: + min_list = [D0[i, j]] + for k in range(1, warp + 1): + i_k = min(i + k, r) + j_k = min(j + k, c) + min_list += [D0[i_k, j] * s, D0[i, j_k] * s] + D1[i, j] += min(min_list) + if len(x) == 1: + path = zeros(len(y)), range(len(y)) + elif len(y) == 1: + path = range(len(x)), zeros(len(x)) + else: + path = _traceback(D0) + return D1[-1, -1], C, D1, path + + +def accelerated_dtw(x, y, dist, warp=1): + """ + Computes Dynamic Time Warping (DTW) of two sequences in a faster way. + Instead of iterating through each element and calculating each distance, + this uses the cdist function from scipy (https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html) + + :param array x: N1*M array + :param array y: N2*M array + :param string or func dist: distance parameter for cdist. When string is given, cdist uses optimized functions for the distance metrics. + If a string is passed, the distance function can be 'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'wminkowski', 'yule'. + :param int warp: how many shifts are computed. + Returns the minimum distance, the cost matrix, the accumulated cost matrix, and the wrap path. + """ + assert len(x) + assert len(y) + if ndim(x) == 1: + x = x.reshape(-1, 1) + if ndim(y) == 1: + y = y.reshape(-1, 1) + r, c = len(x), len(y) + D0 = zeros((r + 1, c + 1)) + D0[0, 1:] = inf + D0[1:, 0] = inf + D1 = D0[1:, 1:] + D0[1:, 1:] = cdist(x, y, dist) + C = D1.copy() + for i in range(r): + for j in range(c): + min_list = [D0[i, j]] + for k in range(1, warp + 1): + min_list += [D0[min(i + k, r), j], + D0[i, min(j + k, c)]] + D1[i, j] += min(min_list) + if len(x) == 1: + path = zeros(len(y)), range(len(y)) + elif len(y) == 1: + path = range(len(x)), zeros(len(x)) + else: + path = _traceback(D0) + return D1[-1, -1], C, D1, path + + +def _traceback(D): + i, j = array(D.shape) - 2 + p, q = [i], [j] + while (i > 0) or (j > 0): + tb = argmin((D[i, j], D[i, j + 1], D[i + 1, j])) + if tb == 0: + i -= 1 + j -= 1 + elif tb == 1: + i -= 1 + else: # (tb == 2): + j -= 1 + p.insert(0, i) + q.insert(0, j) + return array(p), array(q) + + +if __name__ == '__main__': + w = inf + s = 1.0 + if 1: # 1-D numeric + from sklearn.metrics.pairwise import manhattan_distances + x = [0, 0, 1, 1, 2, 4, 2, 1, 2, 0] + y = [1, 1, 1, 2, 2, 2, 2, 3, 2, 0] + dist_fun = manhattan_distances + w = 1 + # s = 1.2 + elif 0: # 2-D numeric + from sklearn.metrics.pairwise import euclidean_distances + x = [[0, 0], [0, 1], [1, 1], [1, 2], [2, 2], [4, 3], [2, 3], [1, 1], [2, 2], [0, 1]] + y = [[1, 0], [1, 1], [1, 1], [2, 1], [4, 3], [4, 3], [2, 3], [3, 1], [1, 2], [1, 0]] + dist_fun = euclidean_distances + else: # 1-D list of strings + from nltk.metrics.distance import edit_distance + # x = ['we', 'shelled', 'clams', 'for', 'the', 'chowder'] + # y = ['class', 'too'] + x = ['i', 'soon', 'found', 'myself', 'muttering', 'to', 'the', 'walls'] + y = ['see', 'drown', 'himself'] + # x = 'we talked about the situation'.split() + # y = 'we talked about the situation'.split() + dist_fun = edit_distance + dist, cost, acc, path = dtw(x, y, dist_fun, w=w, s=s) + + # Vizualize + from matplotlib import pyplot as plt + plt.imshow(cost.T, origin='lower', cmap=plt.cm.Reds, interpolation='nearest') + plt.plot(path[0], path[1], '-o') # relation + plt.xticks(range(len(x)), x) + plt.yticks(range(len(y)), y) + plt.xlabel('x') + plt.ylabel('y') + plt.axis('tight') + if isinf(w): + plt.title('Minimum distance: {}, slope weight: {}'.format(dist, s)) + else: + plt.title('Minimum distance: {}, window widht: {}, slope weight: {}'.format(dist, w, s)) + plt.show() \ No newline at end of file diff --git a/utils/losses.py b/utils/losses.py new file mode 100644 index 0000000..21438e7 --- /dev/null +++ b/utils/losses.py @@ -0,0 +1,89 @@ +# This source code is provided for the purposes of scientific reproducibility +# under the following limited license from Element AI Inc. The code is an +# implementation of the N-BEATS model (Oreshkin et al., N-BEATS: Neural basis +# expansion analysis for interpretable time series forecasting, +# https://arxiv.org/abs/1905.10437). The copyright to the source code is +# licensed under the Creative Commons - Attribution-NonCommercial 4.0 +# International license (CC BY-NC 4.0): +# https://creativecommons.org/licenses/by-nc/4.0/. Any commercial use (whether +# for the benefit of third parties or internally in production) requires an +# explicit license. The subject-matter of the N-BEATS model and associated +# materials are the property of Element AI Inc. and may be subject to patent +# protection. No license to patents is granted hereunder (whether express or +# implied). Copyright © 2020 Element AI Inc. All rights reserved. + +""" +Loss functions for PyTorch. +""" + +import torch as t +import torch.nn as nn +import numpy as np +import pdb + + +def divide_no_nan(a, b): + """ + a/b where the resulted NaN or Inf are replaced by 0. + """ + result = a / b + result[result != result] = .0 + result[result == np.inf] = .0 + return result + + +class mape_loss(nn.Module): + def __init__(self): + super(mape_loss, self).__init__() + + def forward(self, insample: t.Tensor, freq: int, + forecast: t.Tensor, target: t.Tensor, mask: t.Tensor) -> t.float: + """ + MAPE loss as defined in: https://en.wikipedia.org/wiki/Mean_absolute_percentage_error + + :param forecast: Forecast values. Shape: batch, time + :param target: Target values. Shape: batch, time + :param mask: 0/1 mask. Shape: batch, time + :return: Loss value + """ + weights = divide_no_nan(mask, target) + return t.mean(t.abs((forecast - target) * weights)) + + +class smape_loss(nn.Module): + def __init__(self): + super(smape_loss, self).__init__() + + def forward(self, insample: t.Tensor, freq: int, + forecast: t.Tensor, target: t.Tensor, mask: t.Tensor) -> t.float: + """ + sMAPE loss as defined in https://robjhyndman.com/hyndsight/smape/ (Makridakis 1993) + + :param forecast: Forecast values. Shape: batch, time + :param target: Target values. Shape: batch, time + :param mask: 0/1 mask. Shape: batch, time + :return: Loss value + """ + return 200 * t.mean(divide_no_nan(t.abs(forecast - target), + t.abs(forecast.data) + t.abs(target.data)) * mask) + + +class mase_loss(nn.Module): + def __init__(self): + super(mase_loss, self).__init__() + + def forward(self, insample: t.Tensor, freq: int, + forecast: t.Tensor, target: t.Tensor, mask: t.Tensor) -> t.float: + """ + MASE loss as defined in "Scaled Errors" https://robjhyndman.com/papers/mase.pdf + + :param insample: Insample values. Shape: batch, time_i + :param freq: Frequency value + :param forecast: Forecast values. Shape: batch, time_o + :param target: Target values. Shape: batch, time_o + :param mask: 0/1 mask. Shape: batch, time_o + :return: Loss value + """ + masep = t.mean(t.abs(insample[:, freq:] - insample[:, :-freq]), dim=1) + masked_masep_inv = divide_no_nan(mask, masep[:, None]) + return t.mean(t.abs(target - forecast) * masked_masep_inv) diff --git a/utils/metrics.py b/utils/metrics.py new file mode 100644 index 0000000..b4f5a76 --- /dev/null +++ b/utils/metrics.py @@ -0,0 +1,41 @@ +import numpy as np + + +def RSE(pred, true): + return np.sqrt(np.sum((true - pred) ** 2)) / np.sqrt(np.sum((true - true.mean()) ** 2)) + + +def CORR(pred, true): + u = ((true - true.mean(0)) * (pred - pred.mean(0))).sum(0) + d = np.sqrt(((true - true.mean(0)) ** 2 * (pred - pred.mean(0)) ** 2).sum(0)) + return (u / d).mean(-1) + + +def MAE(pred, true): + return np.mean(np.abs(pred - true)) + + +def MSE(pred, true): + return np.mean((pred - true) ** 2) + + +def RMSE(pred, true): + return np.sqrt(MSE(pred, true)) + + +def MAPE(pred, true): + return np.mean(np.abs((pred - true) / true)) + + +def MSPE(pred, true): + return np.mean(np.square((pred - true) / true)) + + +def metric(pred, true): + mae = MAE(pred, true) + mse = MSE(pred, true) + rmse = RMSE(pred, true) + mape = MAPE(pred, true) + mspe = MSPE(pred, true) + + return mae, mse, rmse, mape, mspe diff --git a/utils/print_args.py b/utils/print_args.py new file mode 100644 index 0000000..b96d113 --- /dev/null +++ b/utils/print_args.py @@ -0,0 +1,59 @@ +def print_args(args): + print("\033[1m" + "Basic Config" + "\033[0m") + print(f' {"Task Name:":<20}{args.task_name:<20}{"Is Training:":<20}{args.is_training:<20}') + print(f' {"Model ID:":<20}{args.model_id:<20}{"Model:":<20}{args.model:<20}') + print() + + print("\033[1m" + "Data Loader" + "\033[0m") + print(f' {"Data:":<20}{args.data:<20}{"Root Path:":<20}{args.root_path:<20}') + print(f' {"Data Path:":<20}{args.data_path:<20}{"Features:":<20}{args.features:<20}') + print(f' {"Target:":<20}{args.target:<20}{"Freq:":<20}{args.freq:<20}') + print(f' {"Checkpoints:":<20}{args.checkpoints:<20}') + print() + + if args.task_name in ['long_term_forecast', 'short_term_forecast']: + print("\033[1m" + "Forecasting Task" + "\033[0m") + print(f' {"Seq Len:":<20}{args.seq_len:<20}{"Label Len:":<20}{args.label_len:<20}') + print(f' {"Pred Len:":<20}{args.pred_len:<20}{"Seasonal Patterns:":<20}{args.seasonal_patterns:<20}') + print(f' {"Inverse:":<20}{args.inverse:<20}') + print() + + if args.task_name == 'imputation': + print("\033[1m" + "Imputation Task" + "\033[0m") + print(f' {"Mask Rate:":<20}{args.mask_rate:<20}') + print() + + if args.task_name == 'anomaly_detection': + print("\033[1m" + "Anomaly Detection Task" + "\033[0m") + print(f' {"Anomaly Ratio:":<20}{args.anomaly_ratio:<20}') + print() + + print("\033[1m" + "Model Parameters" + "\033[0m") + print(f' {"Top k:":<20}{args.top_k:<20}{"Num Kernels:":<20}{args.num_kernels:<20}') + print(f' {"Enc In:":<20}{args.enc_in:<20}{"Dec In:":<20}{args.dec_in:<20}') + print(f' {"C Out:":<20}{args.c_out:<20}{"d model:":<20}{args.d_model:<20}') + print(f' {"n heads:":<20}{args.n_heads:<20}{"e layers:":<20}{args.e_layers:<20}') + print(f' {"d layers:":<20}{args.d_layers:<20}{"d FF:":<20}{args.d_ff:<20}') + print(f' {"Moving Avg:":<20}{args.moving_avg:<20}{"Factor:":<20}{args.factor:<20}') + print(f' {"Distil:":<20}{args.distil:<20}{"Dropout:":<20}{args.dropout:<20}') + print(f' {"Embed:":<20}{args.embed:<20}{"Activation:":<20}{args.activation:<20}') + print(f' {"Output Attention:":<20}{args.output_attention:<20}') + print() + + print("\033[1m" + "Run Parameters" + "\033[0m") + print(f' {"Num Workers:":<20}{args.num_workers:<20}{"Itr:":<20}{args.itr:<20}') + print(f' {"Train Epochs:":<20}{args.train_epochs:<20}{"Batch Size:":<20}{args.batch_size:<20}') + print(f' {"Patience:":<20}{args.patience:<20}{"Learning Rate:":<20}{args.learning_rate:<20}') + print(f' {"Des:":<20}{args.des:<20}{"Loss:":<20}{args.loss:<20}') + print(f' {"Lradj:":<20}{args.lradj:<20}{"Use Amp:":<20}{args.use_amp:<20}') + print() + + print("\033[1m" + "GPU" + "\033[0m") + print(f' {"Use GPU:":<20}{args.use_gpu:<20}{"GPU:":<20}{args.gpu:<20}') + print(f' {"Use Multi GPU:":<20}{args.use_multi_gpu:<20}{"Devices:":<20}{args.devices:<20}') + print() + + print("\033[1m" + "De-stationary Projector Params" + "\033[0m") + p_hidden_dims_str = ', '.join(map(str, args.p_hidden_dims)) + print(f' {"P Hidden Dims:":<20}{p_hidden_dims_str:<20}{"P Hidden Layers:":<20}{args.p_hidden_layers:<20}') + print() diff --git a/utils/timefeatures.py b/utils/timefeatures.py new file mode 100644 index 0000000..7c12972 --- /dev/null +++ b/utils/timefeatures.py @@ -0,0 +1,148 @@ +# From: gluonts/src/gluonts/time_feature/_base.py +# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"). +# You may not use this file except in compliance with the License. +# A copy of the License is located at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# or in the "license" file accompanying this file. This file is distributed +# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either +# express or implied. See the License for the specific language governing +# permissions and limitations under the License. + +from typing import List + +import numpy as np +import pandas as pd +from pandas.tseries import offsets +from pandas.tseries.frequencies import to_offset + + +class TimeFeature: + def __init__(self): + pass + + def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: + pass + + def __repr__(self): + return self.__class__.__name__ + "()" + + +class SecondOfMinute(TimeFeature): + """Minute of hour encoded as value between [-0.5, 0.5]""" + + def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: + return index.second / 59.0 - 0.5 + + +class MinuteOfHour(TimeFeature): + """Minute of hour encoded as value between [-0.5, 0.5]""" + + def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: + return index.minute / 59.0 - 0.5 + + +class HourOfDay(TimeFeature): + """Hour of day encoded as value between [-0.5, 0.5]""" + + def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: + return index.hour / 23.0 - 0.5 + + +class DayOfWeek(TimeFeature): + """Hour of day encoded as value between [-0.5, 0.5]""" + + def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: + return index.dayofweek / 6.0 - 0.5 + + +class DayOfMonth(TimeFeature): + """Day of month encoded as value between [-0.5, 0.5]""" + + def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: + return (index.day - 1) / 30.0 - 0.5 + + +class DayOfYear(TimeFeature): + """Day of year encoded as value between [-0.5, 0.5]""" + + def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: + return (index.dayofyear - 1) / 365.0 - 0.5 + + +class MonthOfYear(TimeFeature): + """Month of year encoded as value between [-0.5, 0.5]""" + + def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: + return (index.month - 1) / 11.0 - 0.5 + + +class WeekOfYear(TimeFeature): + """Week of year encoded as value between [-0.5, 0.5]""" + + def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: + return (index.isocalendar().week - 1) / 52.0 - 0.5 + + +def time_features_from_frequency_str(freq_str: str) -> List[TimeFeature]: + """ + Returns a list of time features that will be appropriate for the given frequency string. + Parameters + ---------- + freq_str + Frequency string of the form [multiple][granularity] such as "12H", "5min", "1D" etc. + """ + + features_by_offsets = { + offsets.YearEnd: [], + offsets.QuarterEnd: [MonthOfYear], + offsets.MonthEnd: [MonthOfYear], + offsets.Week: [DayOfMonth, WeekOfYear], + offsets.Day: [DayOfWeek, DayOfMonth, DayOfYear], + offsets.BusinessDay: [DayOfWeek, DayOfMonth, DayOfYear], + offsets.Hour: [HourOfDay, DayOfWeek, DayOfMonth, DayOfYear], + offsets.Minute: [ + MinuteOfHour, + HourOfDay, + DayOfWeek, + DayOfMonth, + DayOfYear, + ], + offsets.Second: [ + SecondOfMinute, + MinuteOfHour, + HourOfDay, + DayOfWeek, + DayOfMonth, + DayOfYear, + ], + } + + offset = to_offset(freq_str) + + for offset_type, feature_classes in features_by_offsets.items(): + if isinstance(offset, offset_type): + return [cls() for cls in feature_classes] + + supported_freq_msg = f""" + Unsupported frequency {freq_str} + The following frequencies are supported: + Y - yearly + alias: A + M - monthly + W - weekly + D - daily + B - business days + H - hourly + T - minutely + alias: min + S - secondly + """ + raise RuntimeError(supported_freq_msg) + + +def time_features(dates, freq='h'): + return np.vstack([feat(dates) for feat in time_features_from_frequency_str(freq)]) diff --git a/utils/tools.py b/utils/tools.py new file mode 100644 index 0000000..08fb91b --- /dev/null +++ b/utils/tools.py @@ -0,0 +1,118 @@ +import os + +import numpy as np +import torch +import matplotlib.pyplot as plt +import pandas as pd +import math + +plt.switch_backend('agg') + + +def adjust_learning_rate(optimizer, epoch, args): + # lr = args.learning_rate * (0.2 ** (epoch // 2)) + if args.lradj == 'type1': + lr_adjust = {epoch: args.learning_rate * (0.5 ** ((epoch - 1) // 1))} + elif args.lradj == 'type2': + lr_adjust = { + 2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6, + 10: 5e-7, 15: 1e-7, 20: 5e-8 + } + elif args.lradj == "cosine": + lr_adjust = {epoch: args.learning_rate /2 * (1 + math.cos(epoch / args.train_epochs * math.pi))} + if epoch in lr_adjust.keys(): + lr = lr_adjust[epoch] + for param_group in optimizer.param_groups: + param_group['lr'] = lr + print('Updating learning rate to {}'.format(lr)) + + +class EarlyStopping: + def __init__(self, patience=7, verbose=False, delta=0): + self.patience = patience + self.verbose = verbose + self.counter = 0 + self.best_score = None + self.early_stop = False + self.val_loss_min = np.Inf + self.delta = delta + + def __call__(self, val_loss, model, path): + score = -val_loss + if self.best_score is None: + self.best_score = score + self.save_checkpoint(val_loss, model, path) + elif score < self.best_score + self.delta: + self.counter += 1 + print(f'EarlyStopping counter: {self.counter} out of {self.patience}') + if self.counter >= self.patience: + self.early_stop = True + else: + self.best_score = score + self.save_checkpoint(val_loss, model, path) + self.counter = 0 + + def save_checkpoint(self, val_loss, model, path): + if self.verbose: + print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') + torch.save(model.state_dict(), path + '/' + 'checkpoint.pth') + self.val_loss_min = val_loss + + +class dotdict(dict): + """dot.notation access to dictionary attributes""" + __getattr__ = dict.get + __setattr__ = dict.__setitem__ + __delattr__ = dict.__delitem__ + + +class StandardScaler(): + def __init__(self, mean, std): + self.mean = mean + self.std = std + + def transform(self, data): + return (data - self.mean) / self.std + + def inverse_transform(self, data): + return (data * self.std) + self.mean + + +def visual(true, preds=None, name='./pic/test.pdf'): + """ + Results visualization + """ + plt.figure() + plt.plot(true, label='GroundTruth', linewidth=2) + if preds is not None: + plt.plot(preds, label='Prediction', linewidth=2) + plt.legend() + plt.savefig(name, bbox_inches='tight') + + +def adjustment(gt, pred): + anomaly_state = False + for i in range(len(gt)): + if gt[i] == 1 and pred[i] == 1 and not anomaly_state: + anomaly_state = True + for j in range(i, 0, -1): + if gt[j] == 0: + break + else: + if pred[j] == 0: + pred[j] = 1 + for j in range(i, len(gt)): + if gt[j] == 0: + break + else: + if pred[j] == 0: + pred[j] = 1 + elif gt[i] == 0: + anomaly_state = False + if anomaly_state: + pred[i] = 1 + return gt, pred + + +def cal_accuracy(y_pred, y_true): + return np.mean(y_pred == y_true) \ No newline at end of file