diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..ef69548
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,692 @@
+
+
+### TEFN
+.out
+**dataset
+
+### Linux ###
+*~
+
+# temporary files which can be created if a process still has a handle open of a deleted file
+.fuse_hidden*
+
+# KDE directory preferences
+.directory
+
+# Linux trash folder which might appear on any partition or disk
+.Trash-*
+
+# .nfs files are created when an open file is removed but is still being accessed
+.nfs*
+
+### macOS ###
+# General
+.DS_Store
+.AppleDouble
+.LSOverride
+
+# Icon must end with two \r
+Icon
+
+
+# Thumbnails
+._*
+
+# Files that might appear in the root of a volume
+.DocumentRevisions-V100
+.fseventsd
+.Spotlight-V100
+.TemporaryItems
+.Trashes
+.VolumeIcon.icns
+.com.apple.timemachine.donotpresent
+
+# Directories potentially created on remote AFP share
+.AppleDB
+.AppleDesktop
+Network Trash Folder
+Temporary Items
+.apdisk
+
+### macOS Patch ###
+# iCloud generated files
+*.icloud
+
+### PyCharm ###
+# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio, WebStorm and Rider
+# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
+
+# User-specific stuff
+.idea/**/workspace.xml
+.idea/**/tasks.xml
+.idea/**/usage.statistics.xml
+.idea/**/dictionaries
+.idea/**/shelf
+
+# AWS User-specific
+.idea/**/aws.xml
+
+# Generated files
+.idea/**/contentModel.xml
+
+# Sensitive or high-churn files
+.idea/**/dataSources/
+.idea/**/dataSources.ids
+.idea/**/dataSources.local.xml
+.idea/**/sqlDataSources.xml
+.idea/**/dynamic.xml
+.idea/**/uiDesigner.xml
+.idea/**/dbnavigator.xml
+
+# Gradle
+.idea/**/gradle.xml
+.idea/**/libraries
+
+# Gradle and Maven with auto-import
+# When using Gradle or Maven with auto-import, you should exclude module files,
+# since they will be recreated, and may cause churn. Uncomment if using
+# auto-import.
+# .idea/artifacts
+# .idea/compiler.xml
+# .idea/jarRepositories.xml
+# .idea/modules.xml
+# .idea/*.iml
+# .idea/modules
+# *.iml
+# *.ipr
+
+# CMake
+cmake-build-*/
+
+# Mongo Explorer plugin
+.idea/**/mongoSettings.xml
+
+# File-based project format
+*.iws
+
+# IntelliJ
+out/
+
+# mpeltonen/sbt-idea plugin
+.idea_modules/
+
+# JIRA plugin
+atlassian-ide-plugin.xml
+
+# Cursive Clojure plugin
+.idea/replstate.xml
+
+# SonarLint plugin
+.idea/sonarlint/
+
+# Crashlytics plugin (for Android Studio and IntelliJ)
+com_crashlytics_export_strings.xml
+crashlytics.properties
+crashlytics-build.properties
+fabric.properties
+
+# Editor-based Rest Client
+.idea/httpRequests
+
+# Android studio 3.1+ serialized cache file
+.idea/caches/build_file_checksums.ser
+
+### PyCharm Patch ###
+# Comment Reason: https://github.com/joeblau/gitignore.io/issues/186#issuecomment-215987721
+
+# *.iml
+# modules.xml
+# .idea/misc.xml
+# *.ipr
+
+# Sonarlint plugin
+# https://plugins.jetbrains.com/plugin/7973-sonarlint
+.idea/**/sonarlint/
+
+# SonarQube Plugin
+# https://plugins.jetbrains.com/plugin/7238-sonarqube-community-plugin
+.idea/**/sonarIssues.xml
+
+# Markdown Navigator plugin
+# https://plugins.jetbrains.com/plugin/7896-markdown-navigator-enhanced
+.idea/**/markdown-navigator.xml
+.idea/**/markdown-navigator-enh.xml
+.idea/**/markdown-navigator/
+
+# Cache file creation bug
+# See https://youtrack.jetbrains.com/issue/JBR-2257
+.idea/$CACHE_FILE$
+
+# CodeStream plugin
+# https://plugins.jetbrains.com/plugin/12206-codestream
+.idea/codestream.xml
+
+# Azure Toolkit for IntelliJ plugin
+# https://plugins.jetbrains.com/plugin/8053-azure-toolkit-for-intellij
+.idea/**/azureSettings.xml
+
+### Python ###
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+share/python-wheels/
+*.egg-info/
+.installed.cfg
+*.egg
+MANIFEST
+
+# PyInstaller
+# Usually these files are written by a python script from a template
+# before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.nox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+*.py,cover
+.hypothesis/
+.pytest_cache/
+cover/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+db.sqlite3
+db.sqlite3-journal
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+.pybuilder/
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# IPython
+profile_default/
+ipython_config.py
+
+# pyenv
+# For a library or package, you might want to ignore these files since the code is
+# intended to run in multiple environments; otherwise, check them in:
+# .python-version
+
+# pipenv
+# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
+# However, in case of collaboration, if having platform-specific dependencies or dependencies
+# having no cross-platform support, pipenv may install dependencies that don't work, or not
+# install all needed dependencies.
+#Pipfile.lock
+
+# poetry
+# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
+# This is especially recommended for binary packages to ensure reproducibility, and is more
+# commonly ignored for libraries.
+# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
+#poetry.lock
+
+# pdm
+# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
+#pdm.lock
+# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
+# in version control.
+# https://pdm.fming.dev/#use-with-ide
+.pdm.toml
+
+# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
+__pypackages__/
+
+# Celery stuff
+celerybeat-schedule
+celerybeat.pid
+
+# SageMath parsed files
+*.sage.py
+
+# Environments
+.env
+.venv
+env/
+venv/
+ENV/
+env.bak/
+venv.bak/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
+.dmypy.json
+dmypy.json
+
+# Pyre type checker
+.pyre/
+
+# pytype static type analyzer
+.pytype/
+
+# Cython debug symbols
+cython_debug/
+
+# PyCharm
+# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
+# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
+# and can be added to the global gitignore or merged into this file. For a more nuclear
+# option (not recommended) you can uncomment the following to ignore the entire idea folder.
+#.idea/
+
+### Python Patch ###
+# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
+poetry.toml
+
+# ruff
+.ruff_cache/
+
+# LSP config files
+pyrightconfig.json
+
+### TeX ###
+## Core latex/pdflatex auxiliary files:
+*.aux
+*.lof
+*.lot
+*.fls
+*.out
+*.toc
+*.fmt
+*.fot
+*.cb
+*.cb2
+.*.lb
+
+## Intermediate documents:
+*.dvi
+*.xdv
+*-converted-to.*
+# these rules might exclude image files for figures etc.
+# *.ps
+# *.eps
+# *.pdf
+
+## Generated if empty string is given at "Please type another file name for output:"
+.pdf
+
+## Bibliography auxiliary files (bibtex/biblatex/biber):
+*.bbl
+*.bcf
+*.blg
+*-blx.aux
+*-blx.bib
+*.run.xml
+
+## Build tool auxiliary files:
+*.fdb_latexmk
+*.synctex
+*.synctex(busy)
+*.synctex.gz
+*.synctex.gz(busy)
+*.pdfsync
+
+## Build tool directories for auxiliary files
+# latexrun
+latex.out/
+
+## Auxiliary and intermediate files from other packages:
+# algorithms
+*.alg
+*.loa
+
+# achemso
+acs-*.bib
+
+# amsthm
+*.thm
+
+# beamer
+*.nav
+*.pre
+*.snm
+*.vrb
+
+# changes
+*.soc
+
+# comment
+*.cut
+
+# cprotect
+*.cpt
+
+# elsarticle (documentclass of Elsevier journals)
+*.spl
+
+# endnotes
+*.ent
+
+# fixme
+*.lox
+
+# feynmf/feynmp
+*.mf
+*.mp
+*.t[1-9]
+*.t[1-9][0-9]
+*.tfm
+
+#(r)(e)ledmac/(r)(e)ledpar
+*.end
+*.?end
+*.[1-9]
+*.[1-9][0-9]
+*.[1-9][0-9][0-9]
+*.[1-9]R
+*.[1-9][0-9]R
+*.[1-9][0-9][0-9]R
+*.eledsec[1-9]
+*.eledsec[1-9]R
+*.eledsec[1-9][0-9]
+*.eledsec[1-9][0-9]R
+*.eledsec[1-9][0-9][0-9]
+*.eledsec[1-9][0-9][0-9]R
+
+# glossaries
+*.acn
+*.acr
+*.glg
+*.glo
+*.gls
+*.glsdefs
+*.lzo
+*.lzs
+*.slg
+*.slo
+*.sls
+
+# uncomment this for glossaries-extra (will ignore makeindex's style files!)
+# *.ist
+
+# gnuplot
+*.gnuplot
+*.table
+
+# gnuplottex
+*-gnuplottex-*
+
+# gregoriotex
+*.gaux
+*.glog
+*.gtex
+
+# htlatex
+*.4ct
+*.4tc
+*.idv
+*.lg
+*.trc
+*.xref
+
+# hyperref
+*.brf
+
+# knitr
+*-concordance.tex
+# TODO Uncomment the next line if you use knitr and want to ignore its generated tikz files
+# *.tikz
+*-tikzDictionary
+
+# listings
+*.lol
+
+# luatexja-ruby
+*.ltjruby
+
+# makeidx
+*.idx
+*.ilg
+*.ind
+
+# minitoc
+*.maf
+*.mlf
+*.mlt
+*.mtc[0-9]*
+*.slf[0-9]*
+*.slt[0-9]*
+*.stc[0-9]*
+
+# minted
+_minted*
+*.pyg
+
+# morewrites
+*.mw
+
+# newpax
+*.newpax
+
+# nomencl
+*.nlg
+*.nlo
+*.nls
+
+# pax
+*.pax
+
+# pdfpcnotes
+*.pdfpc
+
+# sagetex
+*.sagetex.sage
+*.sagetex.py
+*.sagetex.scmd
+
+# scrwfile
+*.wrt
+
+# svg
+svg-inkscape/
+
+# sympy
+*.sout
+*.sympy
+sympy-plots-for-*.tex/
+
+# pdfcomment
+*.upa
+*.upb
+
+# pythontex
+*.pytxcode
+pythontex-files-*/
+
+# tcolorbox
+*.listing
+
+# thmtools
+*.loe
+
+# TikZ & PGF
+*.dpth
+*.md5
+*.auxlock
+
+# titletoc
+*.ptc
+
+# todonotes
+*.tdo
+
+# vhistory
+*.hst
+*.ver
+
+# easy-todo
+*.lod
+
+# xcolor
+*.xcp
+
+# xmpincl
+*.xmpi
+
+# xindy
+*.xdy
+
+# xypic precompiled matrices and outlines
+*.xyc
+*.xyd
+
+# endfloat
+*.ttt
+*.fff
+
+# Latexian
+TSWLatexianTemp*
+
+## Editors:
+# WinEdt
+*.bak
+*.sav
+
+# Texpad
+.texpadtmp
+
+# LyX
+*.lyx~
+
+# Kile
+*.backup
+
+# gummi
+.*.swp
+
+# KBibTeX
+*~[0-9]*
+
+# TeXnicCenter
+*.tps
+
+# auto folder when using emacs and auctex
+./auto/*
+*.el
+
+# expex forward references with \gathertags
+*-tags.tex
+
+# standalone packages
+*.sta
+
+# Makeindex log files
+*.lpz
+
+# xwatermark package
+*.xwm
+
+# REVTeX puts footnotes in the bibliography by default, unless the nofootinbib
+# option is specified. Footnotes are the stored in a file with suffix Notes.bib.
+# Uncomment the next line to have this generated file ignored.
+#*Notes.bib
+
+### TeX Patch ###
+# LIPIcs / OASIcs
+*.vtc
+
+# glossaries
+*.glstex
+
+### VisualStudioCode ###
+.vscode/*
+!.vscode/settings.json
+!.vscode/tasks.json
+!.vscode/launch.json
+!.vscode/extensions.json
+!.vscode/*.code-snippets
+
+# Local History for Visual Studio Code
+.history/
+
+# Built Visual Studio Code Extensions
+*.vsix
+
+### VisualStudioCode Patch ###
+# Ignore all local history of files
+.history
+.ionide
+
+### Windows ###
+# Windows thumbnail cache files
+Thumbs.db
+Thumbs.db:encryptable
+ehthumbs.db
+ehthumbs_vista.db
+
+# Dump file
+*.stackdump
+
+# Folder config file
+[Dd]esktop.ini
+
+# Recycle Bin used on file shares
+$RECYCLE.BIN/
+
+# Windows Installer files
+*.cab
+*.msi
+*.msix
+*.msm
+*.msp
+
+# Windows shortcuts
+*.lnk
\ No newline at end of file
diff --git a/.idea/.gitignore b/.idea/.gitignore
new file mode 100644
index 0000000..35410ca
--- /dev/null
+++ b/.idea/.gitignore
@@ -0,0 +1,8 @@
+# 默认忽略的文件
+/shelf/
+/workspace.xml
+# 基于编辑器的 HTTP 客户端请求
+/httpRequests/
+# Datasource local storage ignored files
+/dataSources/
+/dataSources.local.xml
diff --git a/.idea/code.iml b/.idea/code.iml
new file mode 100644
index 0000000..e0bab2b
--- /dev/null
+++ b/.idea/code.iml
@@ -0,0 +1,12 @@
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/inspectionProfiles/Project_Default.xml b/.idea/inspectionProfiles/Project_Default.xml
new file mode 100644
index 0000000..9a304bd
--- /dev/null
+++ b/.idea/inspectionProfiles/Project_Default.xml
@@ -0,0 +1,30 @@
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/inspectionProfiles/profiles_settings.xml b/.idea/inspectionProfiles/profiles_settings.xml
new file mode 100644
index 0000000..105ce2d
--- /dev/null
+++ b/.idea/inspectionProfiles/profiles_settings.xml
@@ -0,0 +1,6 @@
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/misc.xml b/.idea/misc.xml
new file mode 100644
index 0000000..9fda29e
--- /dev/null
+++ b/.idea/misc.xml
@@ -0,0 +1,7 @@
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/modules.xml b/.idea/modules.xml
new file mode 100644
index 0000000..23968dc
--- /dev/null
+++ b/.idea/modules.xml
@@ -0,0 +1,8 @@
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/config/ablation/ECL_script/TEFN_ac_p192.json b/config/ablation/ECL_script/TEFN_ac_p192.json
new file mode 100644
index 0000000..53f5069
--- /dev/null
+++ b/config/ablation/ECL_script/TEFN_ac_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ECL_script/TEFN_ac_p336.json b/config/ablation/ECL_script/TEFN_ac_p336.json
new file mode 100644
index 0000000..616ff14
--- /dev/null
+++ b/config/ablation/ECL_script/TEFN_ac_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ECL_script/TEFN_ac_p720.json b/config/ablation/ECL_script/TEFN_ac_p720.json
new file mode 100644
index 0000000..4a5206e
--- /dev/null
+++ b/config/ablation/ECL_script/TEFN_ac_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ECL_script/TEFN_ac_p96.json b/config/ablation/ECL_script/TEFN_ac_p96.json
new file mode 100644
index 0000000..1824c3a
--- /dev/null
+++ b/config/ablation/ECL_script/TEFN_ac_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ECL_script/TEFN_at_p192.json b/config/ablation/ECL_script/TEFN_at_p192.json
new file mode 100644
index 0000000..bb9e775
--- /dev/null
+++ b/config/ablation/ECL_script/TEFN_at_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ECL_script/TEFN_at_p336.json b/config/ablation/ECL_script/TEFN_at_p336.json
new file mode 100644
index 0000000..af557bf
--- /dev/null
+++ b/config/ablation/ECL_script/TEFN_at_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ECL_script/TEFN_at_p720.json b/config/ablation/ECL_script/TEFN_at_p720.json
new file mode 100644
index 0000000..80116c2
--- /dev/null
+++ b/config/ablation/ECL_script/TEFN_at_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ECL_script/TEFN_at_p96.json b/config/ablation/ECL_script/TEFN_at_p96.json
new file mode 100644
index 0000000..a5e0629
--- /dev/null
+++ b/config/ablation/ECL_script/TEFN_at_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh1_p192.json b/config/ablation/ETT_script/TEFN_ac_ETTh1_p192.json
new file mode 100644
index 0000000..0d6abe8
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTh1_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN_ac", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh1_p336.json b/config/ablation/ETT_script/TEFN_ac_ETTh1_p336.json
new file mode 100644
index 0000000..69c2499
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTh1_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN_ac", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh1_p720.json b/config/ablation/ETT_script/TEFN_ac_ETTh1_p720.json
new file mode 100644
index 0000000..9e87e14
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTh1_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN_ac", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh1_p96.json b/config/ablation/ETT_script/TEFN_ac_ETTh1_p96.json
new file mode 100644
index 0000000..4fa9634
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTh1_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN_ac", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh2_p192.json b/config/ablation/ETT_script/TEFN_ac_ETTh2_p192.json
new file mode 100644
index 0000000..4885d0a
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTh2_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN_ac", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh2_p336.json b/config/ablation/ETT_script/TEFN_ac_ETTh2_p336.json
new file mode 100644
index 0000000..ad4f349
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTh2_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN_ac", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh2_p720.json b/config/ablation/ETT_script/TEFN_ac_ETTh2_p720.json
new file mode 100644
index 0000000..b97c54c
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTh2_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN_ac", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTh2_p96.json b/config/ablation/ETT_script/TEFN_ac_ETTh2_p96.json
new file mode 100644
index 0000000..ab6fa20
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTh2_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN_ac", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm1_p192.json b/config/ablation/ETT_script/TEFN_ac_ETTm1_p192.json
new file mode 100644
index 0000000..d924ab1
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTm1_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN_ac", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm1_p336.json b/config/ablation/ETT_script/TEFN_ac_ETTm1_p336.json
new file mode 100644
index 0000000..d4a52d6
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTm1_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN_ac", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm1_p720.json b/config/ablation/ETT_script/TEFN_ac_ETTm1_p720.json
new file mode 100644
index 0000000..0ea16b2
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTm1_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN_ac", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm1_p96.json b/config/ablation/ETT_script/TEFN_ac_ETTm1_p96.json
new file mode 100644
index 0000000..8260656
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTm1_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN_ac", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm2_p192.json b/config/ablation/ETT_script/TEFN_ac_ETTm2_p192.json
new file mode 100644
index 0000000..b067b3d
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTm2_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN_ac", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm2_p336.json b/config/ablation/ETT_script/TEFN_ac_ETTm2_p336.json
new file mode 100644
index 0000000..8531d3d
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTm2_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN_ac", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm2_p720.json b/config/ablation/ETT_script/TEFN_ac_ETTm2_p720.json
new file mode 100644
index 0000000..edd4e7e
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTm2_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN_ac", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_ac_ETTm2_p96.json b/config/ablation/ETT_script/TEFN_ac_ETTm2_p96.json
new file mode 100644
index 0000000..0ca16c7
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_ac_ETTm2_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN_ac", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTh1_p192.json b/config/ablation/ETT_script/TEFN_at_ETTh1_p192.json
new file mode 100644
index 0000000..606d588
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTh1_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN_at", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTh1_p336.json b/config/ablation/ETT_script/TEFN_at_ETTh1_p336.json
new file mode 100644
index 0000000..451aa70
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTh1_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN_at", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTh1_p720.json b/config/ablation/ETT_script/TEFN_at_ETTh1_p720.json
new file mode 100644
index 0000000..317468b
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTh1_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN_at", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTh1_p96.json b/config/ablation/ETT_script/TEFN_at_ETTh1_p96.json
new file mode 100644
index 0000000..a495380
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTh1_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN_at", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTh2_p192.json b/config/ablation/ETT_script/TEFN_at_ETTh2_p192.json
new file mode 100644
index 0000000..ef7bd34
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTh2_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN_at", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTh2_p336.json b/config/ablation/ETT_script/TEFN_at_ETTh2_p336.json
new file mode 100644
index 0000000..042a92b
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTh2_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN_at", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTh2_p720.json b/config/ablation/ETT_script/TEFN_at_ETTh2_p720.json
new file mode 100644
index 0000000..56c0e45
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTh2_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN_at", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTh2_p96.json b/config/ablation/ETT_script/TEFN_at_ETTh2_p96.json
new file mode 100644
index 0000000..42bd13b
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTh2_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN_at", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTm1_p192.json b/config/ablation/ETT_script/TEFN_at_ETTm1_p192.json
new file mode 100644
index 0000000..c9f9d65
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTm1_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN_at", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTm1_p336.json b/config/ablation/ETT_script/TEFN_at_ETTm1_p336.json
new file mode 100644
index 0000000..bccc328
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTm1_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN_at", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTm1_p720.json b/config/ablation/ETT_script/TEFN_at_ETTm1_p720.json
new file mode 100644
index 0000000..b6c8bfd
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTm1_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN_at", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTm1_p96.json b/config/ablation/ETT_script/TEFN_at_ETTm1_p96.json
new file mode 100644
index 0000000..c817efb
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTm1_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN_at", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTm2_p192.json b/config/ablation/ETT_script/TEFN_at_ETTm2_p192.json
new file mode 100644
index 0000000..1d5f9bf
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTm2_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN_at", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTm2_p336.json b/config/ablation/ETT_script/TEFN_at_ETTm2_p336.json
new file mode 100644
index 0000000..dbbe8dd
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTm2_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN_at", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTm2_p720.json b/config/ablation/ETT_script/TEFN_at_ETTm2_p720.json
new file mode 100644
index 0000000..484de99
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTm2_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN_at", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/ETT_script/TEFN_at_ETTm2_p96.json b/config/ablation/ETT_script/TEFN_at_ETTm2_p96.json
new file mode 100644
index 0000000..9a3fe68
--- /dev/null
+++ b/config/ablation/ETT_script/TEFN_at_ETTm2_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN_at", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Exchange_script/TEFN_ac_p192.json b/config/ablation/Exchange_script/TEFN_ac_p192.json
new file mode 100644
index 0000000..5b192dc
--- /dev/null
+++ b/config/ablation/Exchange_script/TEFN_ac_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Exchange_script/TEFN_ac_p336.json b/config/ablation/Exchange_script/TEFN_ac_p336.json
new file mode 100644
index 0000000..837349d
--- /dev/null
+++ b/config/ablation/Exchange_script/TEFN_ac_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Exchange_script/TEFN_ac_p720.json b/config/ablation/Exchange_script/TEFN_ac_p720.json
new file mode 100644
index 0000000..a45c095
--- /dev/null
+++ b/config/ablation/Exchange_script/TEFN_ac_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Exchange_script/TEFN_ac_p96.json b/config/ablation/Exchange_script/TEFN_ac_p96.json
new file mode 100644
index 0000000..19b94f0
--- /dev/null
+++ b/config/ablation/Exchange_script/TEFN_ac_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Exchange_script/TEFN_at_p192.json b/config/ablation/Exchange_script/TEFN_at_p192.json
new file mode 100644
index 0000000..24d752b
--- /dev/null
+++ b/config/ablation/Exchange_script/TEFN_at_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Exchange_script/TEFN_at_p336.json b/config/ablation/Exchange_script/TEFN_at_p336.json
new file mode 100644
index 0000000..9248bcb
--- /dev/null
+++ b/config/ablation/Exchange_script/TEFN_at_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Exchange_script/TEFN_at_p720.json b/config/ablation/Exchange_script/TEFN_at_p720.json
new file mode 100644
index 0000000..2d94493
--- /dev/null
+++ b/config/ablation/Exchange_script/TEFN_at_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Exchange_script/TEFN_at_p96.json b/config/ablation/Exchange_script/TEFN_at_p96.json
new file mode 100644
index 0000000..de70844
--- /dev/null
+++ b/config/ablation/Exchange_script/TEFN_at_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Traffic_script/TEFN_ac_p192.json b/config/ablation/Traffic_script/TEFN_ac_p192.json
new file mode 100644
index 0000000..f4df8b9
--- /dev/null
+++ b/config/ablation/Traffic_script/TEFN_ac_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Traffic_script/TEFN_ac_p336.json b/config/ablation/Traffic_script/TEFN_ac_p336.json
new file mode 100644
index 0000000..6c267c0
--- /dev/null
+++ b/config/ablation/Traffic_script/TEFN_ac_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Traffic_script/TEFN_ac_p720.json b/config/ablation/Traffic_script/TEFN_ac_p720.json
new file mode 100644
index 0000000..d6984b9
--- /dev/null
+++ b/config/ablation/Traffic_script/TEFN_ac_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Traffic_script/TEFN_ac_p96.json b/config/ablation/Traffic_script/TEFN_ac_p96.json
new file mode 100644
index 0000000..3b6f3b1
--- /dev/null
+++ b/config/ablation/Traffic_script/TEFN_ac_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Traffic_script/TEFN_at_p192.json b/config/ablation/Traffic_script/TEFN_at_p192.json
new file mode 100644
index 0000000..b51c237
--- /dev/null
+++ b/config/ablation/Traffic_script/TEFN_at_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Traffic_script/TEFN_at_p336.json b/config/ablation/Traffic_script/TEFN_at_p336.json
new file mode 100644
index 0000000..1bcf7ea
--- /dev/null
+++ b/config/ablation/Traffic_script/TEFN_at_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Traffic_script/TEFN_at_p720.json b/config/ablation/Traffic_script/TEFN_at_p720.json
new file mode 100644
index 0000000..3f4b8f2
--- /dev/null
+++ b/config/ablation/Traffic_script/TEFN_at_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Traffic_script/TEFN_at_p96.json b/config/ablation/Traffic_script/TEFN_at_p96.json
new file mode 100644
index 0000000..fb29662
--- /dev/null
+++ b/config/ablation/Traffic_script/TEFN_at_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Weather_script/TEFN_ac_p192.json b/config/ablation/Weather_script/TEFN_ac_p192.json
new file mode 100644
index 0000000..0547cdd
--- /dev/null
+++ b/config/ablation/Weather_script/TEFN_ac_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Weather_script/TEFN_ac_p336.json b/config/ablation/Weather_script/TEFN_ac_p336.json
new file mode 100644
index 0000000..82e7bfe
--- /dev/null
+++ b/config/ablation/Weather_script/TEFN_ac_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Weather_script/TEFN_ac_p720.json b/config/ablation/Weather_script/TEFN_ac_p720.json
new file mode 100644
index 0000000..8091b30
--- /dev/null
+++ b/config/ablation/Weather_script/TEFN_ac_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Weather_script/TEFN_ac_p96.json b/config/ablation/Weather_script/TEFN_ac_p96.json
new file mode 100644
index 0000000..8c83887
--- /dev/null
+++ b/config/ablation/Weather_script/TEFN_ac_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN_ac", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Weather_script/TEFN_at_p192.json b/config/ablation/Weather_script/TEFN_at_p192.json
new file mode 100644
index 0000000..833dbae
--- /dev/null
+++ b/config/ablation/Weather_script/TEFN_at_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Weather_script/TEFN_at_p336.json b/config/ablation/Weather_script/TEFN_at_p336.json
new file mode 100644
index 0000000..f7f306c
--- /dev/null
+++ b/config/ablation/Weather_script/TEFN_at_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Weather_script/TEFN_at_p720.json b/config/ablation/Weather_script/TEFN_at_p720.json
new file mode 100644
index 0000000..5f7c230
--- /dev/null
+++ b/config/ablation/Weather_script/TEFN_at_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/ablation/Weather_script/TEFN_at_p96.json b/config/ablation/Weather_script/TEFN_at_p96.json
new file mode 100644
index 0000000..93bff58
--- /dev/null
+++ b/config/ablation/Weather_script/TEFN_at_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN_at", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ECL_script/TEFN_p192.json b/config/comparision/ECL_script/TEFN_p192.json
new file mode 100644
index 0000000..38582b1
--- /dev/null
+++ b/config/comparision/ECL_script/TEFN_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ECL_script/TEFN_p336.json b/config/comparision/ECL_script/TEFN_p336.json
new file mode 100644
index 0000000..49a5a45
--- /dev/null
+++ b/config/comparision/ECL_script/TEFN_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ECL_script/TEFN_p720.json b/config/comparision/ECL_script/TEFN_p720.json
new file mode 100644
index 0000000..4ff9394
--- /dev/null
+++ b/config/comparision/ECL_script/TEFN_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ECL_script/TEFN_p96.json b/config/comparision/ECL_script/TEFN_p96.json
new file mode 100644
index 0000000..feca76e
--- /dev/null
+++ b/config/comparision/ECL_script/TEFN_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTh1_p192.json b/config/comparision/ETT_script/TEFN_ETTh1_p192.json
new file mode 100644
index 0000000..ca094b6
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTh1_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTh1_p336.json b/config/comparision/ETT_script/TEFN_ETTh1_p336.json
new file mode 100644
index 0000000..b1ae66c
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTh1_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTh1_p720.json b/config/comparision/ETT_script/TEFN_ETTh1_p720.json
new file mode 100644
index 0000000..09930d8
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTh1_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTh1_p96.json b/config/comparision/ETT_script/TEFN_ETTh1_p96.json
new file mode 100644
index 0000000..f340f50
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTh1_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTh2_p192.json b/config/comparision/ETT_script/TEFN_ETTh2_p192.json
new file mode 100644
index 0000000..9ca8b4b
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTh2_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTh2_p336.json b/config/comparision/ETT_script/TEFN_ETTh2_p336.json
new file mode 100644
index 0000000..c16ba81
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTh2_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTh2_p720.json b/config/comparision/ETT_script/TEFN_ETTh2_p720.json
new file mode 100644
index 0000000..011834d
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTh2_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTh2_p96.json b/config/comparision/ETT_script/TEFN_ETTh2_p96.json
new file mode 100644
index 0000000..33019c3
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTh2_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTm1_p192.json b/config/comparision/ETT_script/TEFN_ETTm1_p192.json
new file mode 100644
index 0000000..952c3f7
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTm1_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTm1_p336.json b/config/comparision/ETT_script/TEFN_ETTm1_p336.json
new file mode 100644
index 0000000..bee9c45
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTm1_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTm1_p720.json b/config/comparision/ETT_script/TEFN_ETTm1_p720.json
new file mode 100644
index 0000000..855e31c
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTm1_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTm1_p96.json b/config/comparision/ETT_script/TEFN_ETTm1_p96.json
new file mode 100644
index 0000000..c9aa928
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTm1_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTm2_p192.json b/config/comparision/ETT_script/TEFN_ETTm2_p192.json
new file mode 100644
index 0000000..588ff69
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTm2_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTm2_p336.json b/config/comparision/ETT_script/TEFN_ETTm2_p336.json
new file mode 100644
index 0000000..db0e5fd
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTm2_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTm2_p720.json b/config/comparision/ETT_script/TEFN_ETTm2_p720.json
new file mode 100644
index 0000000..5949872
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTm2_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/ETT_script/TEFN_ETTm2_p96.json b/config/comparision/ETT_script/TEFN_ETTm2_p96.json
new file mode 100644
index 0000000..ffbaa2b
--- /dev/null
+++ b/config/comparision/ETT_script/TEFN_ETTm2_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/Exchange_script/TEFN_p192.json b/config/comparision/Exchange_script/TEFN_p192.json
new file mode 100644
index 0000000..b2b3608
--- /dev/null
+++ b/config/comparision/Exchange_script/TEFN_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/Exchange_script/TEFN_p336.json b/config/comparision/Exchange_script/TEFN_p336.json
new file mode 100644
index 0000000..e58ea0f
--- /dev/null
+++ b/config/comparision/Exchange_script/TEFN_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/Exchange_script/TEFN_p720.json b/config/comparision/Exchange_script/TEFN_p720.json
new file mode 100644
index 0000000..a933fb0
--- /dev/null
+++ b/config/comparision/Exchange_script/TEFN_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/Exchange_script/TEFN_p96.json b/config/comparision/Exchange_script/TEFN_p96.json
new file mode 100644
index 0000000..2c01598
--- /dev/null
+++ b/config/comparision/Exchange_script/TEFN_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/Traffic_script/TEFN_p192.json b/config/comparision/Traffic_script/TEFN_p192.json
new file mode 100644
index 0000000..d0d406f
--- /dev/null
+++ b/config/comparision/Traffic_script/TEFN_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/Traffic_script/TEFN_p336.json b/config/comparision/Traffic_script/TEFN_p336.json
new file mode 100644
index 0000000..4713c2f
--- /dev/null
+++ b/config/comparision/Traffic_script/TEFN_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/Traffic_script/TEFN_p720.json b/config/comparision/Traffic_script/TEFN_p720.json
new file mode 100644
index 0000000..c9eb611
--- /dev/null
+++ b/config/comparision/Traffic_script/TEFN_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/Traffic_script/TEFN_p96.json b/config/comparision/Traffic_script/TEFN_p96.json
new file mode 100644
index 0000000..1f15592
--- /dev/null
+++ b/config/comparision/Traffic_script/TEFN_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/Weather_script/TEFN_p192.json b/config/comparision/Weather_script/TEFN_p192.json
new file mode 100644
index 0000000..22a3a9c
--- /dev/null
+++ b/config/comparision/Weather_script/TEFN_p192.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/Weather_script/TEFN_p336.json b/config/comparision/Weather_script/TEFN_p336.json
new file mode 100644
index 0000000..79302e1
--- /dev/null
+++ b/config/comparision/Weather_script/TEFN_p336.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/Weather_script/TEFN_p720.json b/config/comparision/Weather_script/TEFN_p720.json
new file mode 100644
index 0000000..cacb044
--- /dev/null
+++ b/config/comparision/Weather_script/TEFN_p720.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/comparision/Weather_script/TEFN_p96.json b/config/comparision/Weather_script/TEFN_p96.json
new file mode 100644
index 0000000..5a081c5
--- /dev/null
+++ b/config/comparision/Weather_script/TEFN_p96.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..3630d40
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..930287a
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..38582b1
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..1904de9
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..96d011d
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..4858c04
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..dc109e6
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..74ba5c1
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..5d19db4
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..07aa1da
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..fb25935
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..eada788
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..7efcb51
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..3d00db8
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..e21812a
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..42dc6bf
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..e4a367f
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..18cb65f
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..d9a901c
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..21daa47
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..a94d986
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p192_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..9dc8665
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..1867558
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..6b23b1f
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..7b67cb1
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..f70b567
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..f6b1c2d
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..4e6380b
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..4fcfe1c
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..49a5a45
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..ffb90e5
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..f2ab8fa
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..342c520
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..345656d
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..22d7fd7
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..56431d3
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..154c75f
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..ef0212e
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..7026b6b
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..bbf09fb
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..46ccefb
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..35ffa11
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p336_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..3ef121c
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..54bc748
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..27b03f4
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..4ff9394
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..ea5541d
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..5338309
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..2718c3c
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..6ab8a9b
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..b7ca292
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..ba5d724
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..51f4a83
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..d9d2ca0
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..92bcded
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..9cb13ca
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..d6fe5c1
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..40e2e0b
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..a5fa309
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..e9665ab
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..3080669
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..4e2272a
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..0920f04
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p720_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..680f50b
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..9679bf9
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..bd114d1
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..7119205
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..a7c7af1
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..d41ef83
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..fe445fe
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..feca76e
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..3def1d3
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..aeb1749
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..3b14776
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..bedcadd
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..cfca847
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..f574966
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..86cfd73
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..7b2a9d5
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..476c190
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..1ad6ac3
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..2036443
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..eca9130
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..fac7f93
--- /dev/null
+++ b/config/sensitivity/ECL_script/TEFN_p96_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ECL_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/electricity/", "data_path": "electricity.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 321, "dec_in": 321, "c_out": 321, "d_model": 256, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..a426e77
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..6d8f270
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..f92b9ff
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..2ef5200
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..772bca7
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..926dfe0
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..8646fc8
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..72fb275
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..667f5e3
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..3882824
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..d5fa5cc
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..ca094b6
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..f036e2f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..f4ab4ce
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..e37400f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..0034050
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..00851d2
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..fed7bb2
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..3ca58db
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..953ab94
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..6935564
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p192_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_192", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..19d303a
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..b1ae66c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..43d9e48
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..d3fa5af
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..ae11f63
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..f40bb39
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..8ea2878
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..52861b1
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..dd19e5b
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..7db86ef
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..54426af
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..5e20fc7
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..07aae2c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..a46da9a
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..aabe850
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..8a23302
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..e482d4e
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..788c076
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..75fb7c6
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..9017e1c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..be2994d
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p336_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_336", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..241b4aa
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..903ef89
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..77b5300
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..88a7bd0
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..dde0d47
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..fcc108f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..af5fdf7
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..fa069f3
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..09930d8
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..ca9b972
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..974e83d
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..83595be
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..8bb3791
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..4e7d7f2
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..1551a05
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..0839b9c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..c4006be
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..17b5758
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..30f064c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..113c3c0
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..07af591
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p720_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_720", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..1136741
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..8c8f7c1
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..f340f50
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..821c36d
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..436ecb6
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..bf0b1c4
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..b04f8e3
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..da3c8b0
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..a95b2ed
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..0437518
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..f12e12f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..599d334
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..f720261
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..9b00845
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..5448da2
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..8b8219d
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..2a7744a
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..2e3f000
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..1ce3187
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..6c0a768
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..b5c19cf
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh1_p96_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh1_96_96", "model": "TEFN", "data": "ETTh1", "root_path": "./dataset/ETT-small/", "data_path": "ETTh1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..9b8f446
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..e381885
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..468ce06
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..8bf8098
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..ab8a5ee
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..be2cc65
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..e9bcff1
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..9ca8b4b
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..1de08a6
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..94af1ac
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..3ec6d7f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..c996fb6
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..237319b
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..ece0387
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..338d351
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..03a899f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..a48f0b2
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..358c284
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..81e1ff5
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..32255c2
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p192_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_192", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..77b5d6a
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..6b5f77b
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..0dffa15
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..012546b
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..f72a8c3
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..fb54fef
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..70ead33
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..afa7392
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..9cf6e3d
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..045c2c6
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..3962abe
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..1ae1513
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..e427a50
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..0048765
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..c16ba81
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..5e5cea9
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..883e822
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..256ce66
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..0bd4306
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..731ca98
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p336_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_336", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..d958db4
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..eec50dc
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..a3f3e55
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..1f75316
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..2c00676
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..2ea44b1
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..552b73c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..408e2c0
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..366db55
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..b46fadb
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..c471586
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..db9c03d
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..48e0483
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..0b282fc
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..2fc0e97
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..f1b02c8
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..011834d
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..820778b
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..66e68b9
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..3ccb289
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p720_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_720", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..888df7f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..ed421d5
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..28e997c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..33019c3
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..095e188
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..01b54eb
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..a544e7e
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..e1b5846
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..4f15adf
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..944229a
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..9c187d2
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..35f0dbc
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..3b1f561
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..2cc5354
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..df09222
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..3990377
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..55bab4a
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..c6d7260
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..3c30262
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..dffa25d
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTh2_p96_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTh2_96_96", "model": "TEFN", "data": "ETTh2", "root_path": "./dataset/ETT-small/", "data_path": "ETTh2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..a9371b7
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..3760fd3
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..60fdce1
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..3ba2109
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..6108dc8
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..a9ec5e8
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..bb7cce5
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..6eac122
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..3a34722
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..581e106
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..e30f836
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..6f4dfef
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..b93bf26
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..ba85b76
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..d9f016a
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..952c3f7
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..b6bffb5
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..7ee4ec0
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..619670a
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..0ee134c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..2e060ef
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p192_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_192", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..2358036
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..e755bfb
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..bee9c45
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..d9da592
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..fd74345
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..a0dacd9
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..e9cf7cd
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..748d97c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..0cd6359
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..d58632c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..8a25c56
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..2138dbc
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..036e3e4
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..283a6c3
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..7711874
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..6073d8f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..a55b4c3
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..f2dee89
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..fdf14ef
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..494276e
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..47a7ce2
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p336_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_336", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..b366b28
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..f7a485f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..4414e4e
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..f86d0b0
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..808bcd7
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..affa1da
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..855e31c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..f8e9077
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..ce6da56
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..6a285f7
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..2966c62
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..7b14526
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..07a2661
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..aa20895
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..1c77c35
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..c16a10f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..ff5e03e
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..0ce6e0c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..c6cd8c4
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..4770d98
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..790486a
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p720_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_720", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..4e56541
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..1d2e225
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..0387791
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..a88bbd2
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..74b134a
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..c9aa928
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..50629bb
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..8e02fdd
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..be6864f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..2fbe7e3
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..6b54f23
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..87e405f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..6506ac4
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..3ec501f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..38da48d
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..a9b482f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..f646264
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..88e95ea
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..c45ec84
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..99ceb3d
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..e124441
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm1_p96_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm1_96_96", "model": "TEFN", "data": "ETTm1", "root_path": "./dataset/ETT-small/", "data_path": "ETTm1.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..90ab00d
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..588ff69
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..a96408f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..bb95cac
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..b6ff169
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..be59cd2
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..ef16be8
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..284fe02
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..88be9e7
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..4cec6e7
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..23b4ab2
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..d84107c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..bab287d
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..4882594
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..467b180
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..6e2abc1
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..9bc4766
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..fc2c033
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..f5305a5
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..46d0967
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..02ecbff
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p192_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_192", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..aec844c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..8500337
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..32fc75c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..ac28611
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..db0e5fd
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..d6dfffa
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..8f0a943
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..4bfcd33
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..258564d
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..982743c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..d0c290d
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..bac506e
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..5b75e2f
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..b753416
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..d8864d4
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..6f628d0
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..7bc21a0
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..bd71b9e
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..b5ceca4
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..66e3d11
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..31bdea9
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p336_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_336", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..ea4b6a6
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..c2babe2
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..0499136
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..5949872
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..457f17e
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..75ca5e8
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..42a56db
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..5115cd2
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..b184737
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..d99165e
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..ed09902
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..7947c29
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..0d6af1b
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..7be4dc6
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..61b3770
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..9587833
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..c8e99a3
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..b412477
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..121a3c4
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..18f2e44
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..19e0a07
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p720_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_720", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 16, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..5274ac3
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..af028c4
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..1ba3173
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..acdc24c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..89a3289
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..612ad7e
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..8e01f63
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..f93ec7b
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..b8c729c
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..65f2127
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..2315094
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..ffbaa2b
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..5b1cb03
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..fe0382b
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..47c8642
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..01d7673
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..9f20ba1
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..f671c97
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..9093e8e
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..d9a9791
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..9e65b40
--- /dev/null
+++ b/config/sensitivity/ETT_script/TEFN_ETTm2_p96_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ETTm2_96_96", "model": "TEFN", "data": "ETTm2", "root_path": "./dataset/ETT-small/", "data_path": "ETTm2.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..97c8fa3
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..dae621c
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..023399a
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..2254696
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..2da59ee
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..88c77ca
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..8205979
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..c0a3594
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..c54f35c
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..1828810
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..d0dd51a
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..be25e7c
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..f68c9c2
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..cbbda13
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..f459e29
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..3d692c0
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..f7e75e6
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..b2b3608
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..7c77853
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..e4bc6f2
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..d5656e9
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p192_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..e58ea0f
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..42293ab
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..af039a9
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..479e490
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..555d912
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..839d774
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..bdd0319
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..3c185d0
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..5e50ced
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..9944780
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..f24dc76
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..4081842
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..06ca2bf
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..52b3388
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..f5d248b
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..29616d5
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..ad0e2e3
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..c08453f
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..224f65a
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..69f854e
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..708b236
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p336_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..7a05d69
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..0db625c
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..963de76
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..3925102
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..71389a5
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..0e1decb
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..e008ad3
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..cbc31e9
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..9192d57
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..2520c9d
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..4731ae0
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..a933fb0
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..3a3c269
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..c648a0d
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..1133fa9
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..369cd4b
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..d962f25
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..f712b92
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..94ceb3c
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..ca32a0f
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..8caf851
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p720_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..41147d7
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..0c2294d
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..279bb98
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..d3d24ef
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..268aec8
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..dbc7155
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..8708db9
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..2c01598
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..f9bed1a
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..ec01e32
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..5dc6a5b
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..054dfa6
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..ea2c2c5
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..fa36d24
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..c0941cc
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..9fc90de
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..8bf0eb0
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..38f63eb
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..fe23676
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..0deaf40
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..7e2f6e3
--- /dev/null
+++ b/config/sensitivity/Exchange_script/TEFN_p96_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "Exchange_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/exchange_rate/", "data_path": "exchange_rate.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 8, "dec_in": 8, "c_out": 8, "d_model": 64, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 64, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..dc4066e
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..5d948db
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..3f03db1
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..689d6c5
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..e6a5bc1
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..182295c
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..cfecb61
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..80ed2e7
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..3a0a8f7
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..793bfc1
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..9027687
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..a161d41
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..894a961
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..e27fe05
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..b16a4db
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..7ab2184
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..ec68d42
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..7161ae6
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..3b4359a
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..040900c
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..083e5f4
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p24_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_24", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 24, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..35bc716
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..159d776
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..67145ab
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..4ad7f0d
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..9e84789
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..7a62d3b
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..25c21f4
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..684aca0
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..04853d7
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..5d09129
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..46b5576
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..2ee4ebb
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..002f437
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..2b1102e
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..b266254
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..f2e2a64
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..a2ea10a
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..419f28a
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..783d08c
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..60b492e
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..825dac5
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p36_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_36", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 36, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..aafde48
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..585ffae
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..2da0e8f
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..e717e63
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..6ee39a4
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..e655492
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..f71a1d1
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..5550dc9
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..ad1d419
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..e1e0773
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..a178515
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..acccd94
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..3375f11
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..90697ba
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..a7e5b76
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..ad6cc2e
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..c1ee1db
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..f6a3b8a
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..38968f3
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..33d3284
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..1bc2a27
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p48_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_48", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 48, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..b6989db
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..6ee820c
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..b5b928a
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..27a6eb1
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..f925810
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..92ba054
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..83ff93b
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..49e9c4d
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..a0101df
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..2901330
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..0ecae1c
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..a1790f7
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..354b9e4
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..0314f9f
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e0_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..e7c1aae
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e1_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..47d297c
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e2_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..fd7492b
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e3_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..17bbb8e
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e4_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..6e5cc3e
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e5_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..c3ee67d
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e6_d1.json b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..ba6405c
--- /dev/null
+++ b/config/sensitivity/ILI_script/TEFN_p60_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "ili_36_60", "model": "TEFN", "data": "custom", "root_path": "./dataset/illness/", "data_path": "national_illness.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 36, "label_len": 18, "pred_len": 60, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 7, "dec_in": 7, "c_out": 7, "d_model": 768, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 768, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..5fa1460
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..e8e67c3
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..06ec20c
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..b94a7b2
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..75b5585
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..d6951e2
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..dd80776
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..ebd6870
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..306bf9a
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..48ef3b1
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..d1ed1b8
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..902cb4a
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..5b1e1aa
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..4a61d27
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..d0d406f
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..5ae3ee2
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..3d58c22
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..2142cd6
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..9f2786b
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..0512ec9
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..ba52d01
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p192_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..7f3c0ea
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..52203c3
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..e0805c3
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..8707c97
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..ce6211a
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..c0d2b7f
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..d8dca21
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..7387fa6
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..ff1ff7e
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..6651f9c
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..d3724f1
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..794c936
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..018c120
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..782b75f
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..4713c2f
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..9bbc6d7
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..518007b
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..4fdc27d
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..e04f03e
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..63673b9
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..7041944
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p336_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..74f853d
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..9a8fc03
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..c9eb611
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..3143696
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..836432d
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..ebd8339
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..d60e01f
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..12aea76
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..2420ac6
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..c522e53
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..e4c9664
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..d774ee4
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..1ffe69a
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..3705e12
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..a1ce640
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..614ee28
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..85f0d97
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..1ebcc1e
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..74805ea
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..2b094d9
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..a5e921b
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p720_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..dfc342a
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..b252878
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..3571464
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..afd31ed
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..adf7ca0
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..7b84b6e
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..255de27
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..1f15592
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..f509535
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..fe4738a
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..a2d1cd5
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..9a8bc4c
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..a652b08
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..905b259
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..997df88
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..b30a34d
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..2802e3f
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..4c0008b
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..6933878
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..73fff0e
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..b692aa8
--- /dev/null
+++ b/config/sensitivity/Traffic_script/TEFN_p96_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "traffic_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/traffic/", "data_path": "traffic.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 862, "dec_in": 862, "c_out": 862, "d_model": 512, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 512, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..e1bed3d
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..e3e8801
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..7b77e2d
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..739f43d
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..22a3a9c
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..7c38d51
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..d95fedc
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..f039e21
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..478da82
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..bf14c5b
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..228f814
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..d10a5a3
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..491cf44
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..b7806b7
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..9d16656
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..127db40
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..1aa603c
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..13b9ba0
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..08c2ae7
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..694920d
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..825c023
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p192_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_192", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 192, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..322f9a7
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..a3a5b6c
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..df70f12
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..95d7801
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..79302e1
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..5e49f69
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..dc9d794
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..0677763
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..058870b
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..d5aa86e
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..76019e9
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..5087b42
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..beff172
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..dcf0a46
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..3d0fae0
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..a5f3532
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..f809ede
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..2d8407e
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..bcab2d9
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..85a379f
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..f74e046
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p336_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_336", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 336, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..e6721de
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..556a3a0
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..da80d22
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..9537e70
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..e15b420
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..45e71f5
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..c226573
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..cacb044
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..2a28f36
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..0528ad4
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..b27c8e7
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..e79785e
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..82fd2bd
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..40766a3
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..7c241ec
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..2e59042
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..403b700
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..2d58820
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..4976510
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..f2950cc
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..08c1416
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p720_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_720", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 720, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e0_d1.json
new file mode 100644
index 0000000..c3d150e
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e1_d1.json
new file mode 100644
index 0000000..47d9ddd
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e2_d1.json
new file mode 100644
index 0000000..5308eae
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e3_d1.json
new file mode 100644
index 0000000..ec26c73
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e4_d1.json
new file mode 100644
index 0000000..5edeb55
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e5_d1.json
new file mode 100644
index 0000000..c9954dc
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e6_d1.json
new file mode 100644
index 0000000..3347da2
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.01_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.01, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e0_d1.json
new file mode 100644
index 0000000..5a081c5
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e1_d1.json
new file mode 100644
index 0000000..9cbb5f3
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e2_d1.json
new file mode 100644
index 0000000..2772359
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e3_d1.json
new file mode 100644
index 0000000..2b11474
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e4_d1.json
new file mode 100644
index 0000000..8b80005
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e5_d1.json
new file mode 100644
index 0000000..4f292fc
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e6_d1.json
new file mode 100644
index 0000000..077503a
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.05_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.05, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e0_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e0_d1.json
new file mode 100644
index 0000000..fe72836
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e0_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 0, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e1_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e1_d1.json
new file mode 100644
index 0000000..ca202b8
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e1_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 1, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e2_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e2_d1.json
new file mode 100644
index 0000000..4e8e48b
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e2_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 2, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e3_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e3_d1.json
new file mode 100644
index 0000000..61e1771
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e3_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 3, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e4_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e4_d1.json
new file mode 100644
index 0000000..a6b8dc5
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e4_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 4, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e5_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e5_d1.json
new file mode 100644
index 0000000..9e666a7
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e5_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 5, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e6_d1.json b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e6_d1.json
new file mode 100644
index 0000000..1f18180
--- /dev/null
+++ b/config/sensitivity/Weather_script/TEFN_p96_dp0.1_l0.1_e6_d1.json
@@ -0,0 +1 @@
+{"task_name": "long_term_forecast", "is_training": 1, "model_id": "weather_96_96", "model": "TEFN", "data": "custom", "root_path": "./dataset/weather/", "data_path": "weather.csv", "features": "M", "target": "OT", "freq": "h", "checkpoints": "./out/checkpoints/", "seq_len": 96, "label_len": 48, "pred_len": 96, "seasonal_patterns": "Monthly", "inverse": false, "mask_rate": 0.25, "anomaly_ratio": 0.25, "top_k": 5, "num_kernels": 6, "enc_in": 21, "dec_in": 21, "c_out": 21, "d_model": 32, "n_heads": 8, "e_layers": 6, "d_layers": 1, "d_ff": 32, "moving_avg": 25, "factor": 3, "distil": true, "dropout": 0.1, "embed": "timeF", "activation": "gelu", "output_attention": false, "channel_independence": 0, "conv_kernel": null, "num_workers": 10, "itr": 1, "train_epochs": 10, "batch_size": 32, "patience": 3, "learning_rate": 0.1, "des": "Exp", "loss": "MSE", "lradj": "type1", "use_amp": false, "use_gpu": true, "gpu": 0, "use_multi_gpu": false, "devices": "0,1,2,3", "p_hidden_dims": [128, 128], "p_hidden_layers": 2}
\ No newline at end of file
diff --git a/data_provider/__init__.py b/data_provider/__init__.py
new file mode 100644
index 0000000..8b13789
--- /dev/null
+++ b/data_provider/__init__.py
@@ -0,0 +1 @@
+
diff --git a/data_provider/data_factory.py b/data_provider/data_factory.py
new file mode 100644
index 0000000..35abd52
--- /dev/null
+++ b/data_provider/data_factory.py
@@ -0,0 +1,42 @@
+from torch.utils.data import DataLoader
+
+from data_provider.data_loader import Dataset_ETT_hour, Dataset_ETT_minute, Dataset_Custom
+
+data_dict = {
+ 'ETTh1': Dataset_ETT_hour,
+ 'ETTh2': Dataset_ETT_hour,
+ 'ETTm1': Dataset_ETT_minute,
+ 'ETTm2': Dataset_ETT_minute,
+ 'custom': Dataset_Custom
+}
+
+
+def data_provider(args, flag):
+ Data = data_dict[args.data]
+ timeenc = 0 if args.embed != 'timeF' else 1
+
+ shuffle_flag = False if flag == 'test' else True
+ drop_last = True
+ batch_size = args.batch_size
+ freq = args.freq
+
+ data_set = Data(
+ args=args,
+ root_path=args.root_path,
+ data_path=args.data_path,
+ flag=flag,
+ size=[args.seq_len, args.label_len, args.pred_len],
+ features=args.features,
+ target=args.target,
+ timeenc=timeenc,
+ freq=freq,
+ seasonal_patterns=args.seasonal_patterns
+ )
+ print(flag, len(data_set))
+ data_loader = DataLoader(
+ data_set,
+ batch_size=batch_size,
+ shuffle=shuffle_flag,
+ num_workers=args.num_workers,
+ drop_last=drop_last)
+ return data_set, data_loader
diff --git a/data_provider/data_loader.py b/data_provider/data_loader.py
new file mode 100644
index 0000000..35681d7
--- /dev/null
+++ b/data_provider/data_loader.py
@@ -0,0 +1,302 @@
+import os
+import warnings
+
+import pandas as pd
+from sklearn.preprocessing import StandardScaler
+from torch.utils.data import Dataset
+
+from utils.augmentation import run_augmentation_single
+from utils.timefeatures import time_features
+
+warnings.filterwarnings('ignore')
+
+
+class Dataset_ETT_hour(Dataset):
+ def __init__(self, args, root_path, flag='train', size=None,
+ features='S', data_path='ETTh1.csv',
+ target='OT', scale=True, timeenc=0, freq='h', seasonal_patterns=None):
+ # size [seq_len, label_len, pred_len]
+ self.args = args
+ # info
+ if size == None:
+ self.seq_len = 24 * 4 * 4
+ self.label_len = 24 * 4
+ self.pred_len = 24 * 4
+ else:
+ self.seq_len = size[0]
+ self.label_len = size[1]
+ self.pred_len = size[2]
+ # init
+ assert flag in ['train', 'test', 'val']
+ type_map = {'train': 0, 'val': 1, 'test': 2}
+ self.set_type = type_map[flag]
+
+ self.features = features
+ self.target = target
+ self.scale = scale
+ self.timeenc = timeenc
+ self.freq = freq
+
+ self.root_path = root_path
+ self.data_path = data_path
+ self.__read_data__()
+
+ def __read_data__(self):
+ self.scaler = StandardScaler()
+ df_raw = pd.read_csv(os.path.join(self.root_path,
+ self.data_path))
+
+ border1s = [0, 12 * 30 * 24 - self.seq_len, 12 * 30 * 24 + 4 * 30 * 24 - self.seq_len]
+ border2s = [12 * 30 * 24, 12 * 30 * 24 + 4 * 30 * 24, 12 * 30 * 24 + 8 * 30 * 24]
+ border1 = border1s[self.set_type]
+ border2 = border2s[self.set_type]
+
+ if self.features == 'M' or self.features == 'MS':
+ cols_data = df_raw.columns[1:]
+ df_data = df_raw[cols_data]
+ elif self.features == 'S':
+ df_data = df_raw[[self.target]]
+
+ if self.scale:
+ train_data = df_data[border1s[0]:border2s[0]]
+ self.scaler.fit(train_data.values)
+ data = self.scaler.transform(df_data.values)
+ else:
+ data = df_data.values
+
+ df_stamp = df_raw[['date']][border1:border2]
+ df_stamp['date'] = pd.to_datetime(df_stamp.date)
+ if self.timeenc == 0:
+ df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1)
+ df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1)
+ df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1)
+ df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1)
+ data_stamp = df_stamp.drop(['date'], 1).values
+ elif self.timeenc == 1:
+ data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq)
+ data_stamp = data_stamp.transpose(1, 0)
+
+ self.data_x = data[border1:border2]
+ self.data_y = data[border1:border2]
+
+ if self.set_type == 0 and self.args.augmentation_ratio > 0:
+ self.data_x, self.data_y, augmentation_tags = run_augmentation_single(self.data_x, self.data_y, self.args)
+
+ self.data_stamp = data_stamp
+
+ def __getitem__(self, index):
+ s_begin = index
+ s_end = s_begin + self.seq_len
+ r_begin = s_end - self.label_len
+ r_end = r_begin + self.label_len + self.pred_len
+
+ seq_x = self.data_x[s_begin:s_end]
+ seq_y = self.data_y[r_begin:r_end]
+ seq_x_mark = self.data_stamp[s_begin:s_end]
+ seq_y_mark = self.data_stamp[r_begin:r_end]
+
+ return seq_x, seq_y, seq_x_mark, seq_y_mark
+
+ def __len__(self):
+ return len(self.data_x) - self.seq_len - self.pred_len + 1
+
+ def inverse_transform(self, data):
+ return self.scaler.inverse_transform(data)
+
+
+class Dataset_ETT_minute(Dataset):
+ def __init__(self, args, root_path, flag='train', size=None,
+ features='S', data_path='ETTm1.csv',
+ target='OT', scale=True, timeenc=0, freq='t', seasonal_patterns=None):
+ # size [seq_len, label_len, pred_len]
+ self.args = args
+ # info
+ if size == None:
+ self.seq_len = 24 * 4 * 4
+ self.label_len = 24 * 4
+ self.pred_len = 24 * 4
+ else:
+ self.seq_len = size[0]
+ self.label_len = size[1]
+ self.pred_len = size[2]
+ # init
+ assert flag in ['train', 'test', 'val']
+ type_map = {'train': 0, 'val': 1, 'test': 2}
+ self.set_type = type_map[flag]
+
+ self.features = features
+ self.target = target
+ self.scale = scale
+ self.timeenc = timeenc
+ self.freq = freq
+
+ self.root_path = root_path
+ self.data_path = data_path
+ self.__read_data__()
+
+ def __read_data__(self):
+ self.scaler = StandardScaler()
+ df_raw = pd.read_csv(os.path.join(self.root_path,
+ self.data_path))
+
+ border1s = [0, 12 * 30 * 24 * 4 - self.seq_len, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4 - self.seq_len]
+ border2s = [12 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 8 * 30 * 24 * 4]
+ border1 = border1s[self.set_type]
+ border2 = border2s[self.set_type]
+
+ if self.features == 'M' or self.features == 'MS':
+ cols_data = df_raw.columns[1:]
+ df_data = df_raw[cols_data]
+ elif self.features == 'S':
+ df_data = df_raw[[self.target]]
+
+ if self.scale:
+ train_data = df_data[border1s[0]:border2s[0]]
+ self.scaler.fit(train_data.values)
+ data = self.scaler.transform(df_data.values)
+ else:
+ data = df_data.values
+
+ df_stamp = df_raw[['date']][border1:border2]
+ df_stamp['date'] = pd.to_datetime(df_stamp.date)
+ if self.timeenc == 0:
+ df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1)
+ df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1)
+ df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1)
+ df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1)
+ df_stamp['minute'] = df_stamp.date.apply(lambda row: row.minute, 1)
+ df_stamp['minute'] = df_stamp.minute.map(lambda x: x // 15)
+ data_stamp = df_stamp.drop(['date'], 1).values
+ elif self.timeenc == 1:
+ data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq)
+ data_stamp = data_stamp.transpose(1, 0)
+
+ self.data_x = data[border1:border2]
+ self.data_y = data[border1:border2]
+
+ if self.set_type == 0 and self.args.augmentation_ratio > 0:
+ self.data_x, self.data_y, augmentation_tags = run_augmentation_single(self.data_x, self.data_y, self.args)
+
+ self.data_stamp = data_stamp
+
+ def __getitem__(self, index):
+ s_begin = index
+ s_end = s_begin + self.seq_len
+ r_begin = s_end - self.label_len
+ r_end = r_begin + self.label_len + self.pred_len
+
+ seq_x = self.data_x[s_begin:s_end]
+ seq_y = self.data_y[r_begin:r_end]
+ seq_x_mark = self.data_stamp[s_begin:s_end]
+ seq_y_mark = self.data_stamp[r_begin:r_end]
+
+ return seq_x, seq_y, seq_x_mark, seq_y_mark
+
+ def __len__(self):
+ return len(self.data_x) - self.seq_len - self.pred_len + 1
+
+ def inverse_transform(self, data):
+ return self.scaler.inverse_transform(data)
+
+
+class Dataset_Custom(Dataset):
+ def __init__(self, args, root_path, flag='train', size=None,
+ features='S', data_path='ETTh1.csv',
+ target='OT', scale=True, timeenc=0, freq='h', seasonal_patterns=None):
+ # size [seq_len, label_len, pred_len]
+ self.args = args
+ # info
+ if size == None:
+ self.seq_len = 24 * 4 * 4
+ self.label_len = 24 * 4
+ self.pred_len = 24 * 4
+ else:
+ self.seq_len = size[0]
+ self.label_len = size[1]
+ self.pred_len = size[2]
+ # init
+ assert flag in ['train', 'test', 'val']
+ type_map = {'train': 0, 'val': 1, 'test': 2}
+ self.set_type = type_map[flag]
+
+ self.features = features
+ self.target = target
+ self.scale = scale
+ self.timeenc = timeenc
+ self.freq = freq
+
+ self.root_path = root_path
+ self.data_path = data_path
+ self.__read_data__()
+
+ def __read_data__(self):
+ self.scaler = StandardScaler()
+ df_raw = pd.read_csv(os.path.join(self.root_path,
+ self.data_path))
+
+ '''
+ df_raw.columns: ['date', ...(other features), target feature]
+ '''
+ cols = list(df_raw.columns)
+ cols.remove(self.target)
+ cols.remove('date')
+ df_raw = df_raw[['date'] + cols + [self.target]]
+ num_train = int(len(df_raw) * 0.7)
+ num_test = int(len(df_raw) * 0.2)
+ num_vali = len(df_raw) - num_train - num_test
+ border1s = [0, num_train - self.seq_len, len(df_raw) - num_test - self.seq_len]
+ border2s = [num_train, num_train + num_vali, len(df_raw)]
+ border1 = border1s[self.set_type]
+ border2 = border2s[self.set_type]
+
+ if self.features == 'M' or self.features == 'MS':
+ cols_data = df_raw.columns[1:]
+ df_data = df_raw[cols_data]
+ elif self.features == 'S':
+ df_data = df_raw[[self.target]]
+
+ if self.scale:
+ train_data = df_data[border1s[0]:border2s[0]]
+ self.scaler.fit(train_data.values)
+ data = self.scaler.transform(df_data.values)
+ else:
+ data = df_data.values
+
+ df_stamp = df_raw[['date']][border1:border2]
+ df_stamp['date'] = pd.to_datetime(df_stamp.date)
+ if self.timeenc == 0:
+ df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1)
+ df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1)
+ df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1)
+ df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1)
+ data_stamp = df_stamp.drop(['date'], 1).values
+ elif self.timeenc == 1:
+ data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq)
+ data_stamp = data_stamp.transpose(1, 0)
+
+ self.data_x = data[border1:border2]
+ self.data_y = data[border1:border2]
+
+ if self.set_type == 0 and self.args.augmentation_ratio > 0:
+ self.data_x, self.data_y, augmentation_tags = run_augmentation_single(self.data_x, self.data_y, self.args)
+
+ self.data_stamp = data_stamp
+
+ def __getitem__(self, index):
+ s_begin = index
+ s_end = s_begin + self.seq_len
+ r_begin = s_end - self.label_len
+ r_end = r_begin + self.label_len + self.pred_len
+
+ seq_x = self.data_x[s_begin:s_end]
+ seq_y = self.data_y[r_begin:r_end]
+ seq_x_mark = self.data_stamp[s_begin:s_end]
+ seq_y_mark = self.data_stamp[r_begin:r_end]
+
+ return seq_x, seq_y, seq_x_mark, seq_y_mark
+
+ def __len__(self):
+ return len(self.data_x) - self.seq_len - self.pred_len + 1
+
+ def inverse_transform(self, data):
+ return self.scaler.inverse_transform(data)
diff --git a/exp/__init__.py b/exp/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/exp/exp_basic.py b/exp/exp_basic.py
new file mode 100644
index 0000000..3d4a838
--- /dev/null
+++ b/exp/exp_basic.py
@@ -0,0 +1,44 @@
+import os
+
+import torch
+
+from models import TEFN, TEFN_ac, TEFN_at
+
+
+class Exp_Basic(object):
+ def __init__(self, args):
+ self.args = args
+ self.model_dict = {
+ 'TEFN': TEFN,
+ 'TEFN_ac': TEFN_ac,
+ 'TEFN_at': TEFN_at
+ }
+ self.device = self._acquire_device()
+ self.model = self._build_model().to(self.device)
+
+ def _build_model(self):
+ raise NotImplementedError
+ return None
+
+ def _acquire_device(self):
+ if self.args.use_gpu:
+ os.environ["CUDA_VISIBLE_DEVICES"] = str(
+ self.args.gpu) if not self.args.use_multi_gpu else self.args.devices
+ device = torch.device('cuda:{}'.format(self.args.gpu))
+ print('Use GPU: cuda:{}'.format(self.args.gpu))
+ else:
+ device = torch.device('cpu')
+ print('Use CPU')
+ return device
+
+ def _get_data(self):
+ pass
+
+ def vali(self):
+ pass
+
+ def train(self):
+ pass
+
+ def test(self):
+ pass
diff --git a/exp/exp_long_term_forecasting.py b/exp/exp_long_term_forecasting.py
new file mode 100644
index 0000000..0c82246
--- /dev/null
+++ b/exp/exp_long_term_forecasting.py
@@ -0,0 +1,285 @@
+import os
+import time
+import warnings
+
+import numpy as np
+import torch
+import torch.nn as nn
+from torch import optim
+
+from data_provider.data_factory import data_provider
+from exp.exp_basic import Exp_Basic
+from utils.dtw_metric import accelerated_dtw
+from utils.metrics import metric
+from utils.tools import EarlyStopping, adjust_learning_rate, visual
+
+warnings.filterwarnings('ignore')
+
+
+class Exp_Long_Term_Forecast(Exp_Basic):
+ def __init__(self, args):
+ super(Exp_Long_Term_Forecast, self).__init__(args)
+
+ def _build_model(self):
+ model = self.model_dict[self.args.model].Model(self.args).float()
+
+ if self.args.use_multi_gpu and self.args.use_gpu:
+ model = nn.DataParallel(model, device_ids=self.args.device_ids)
+ return model
+
+ def _get_data(self, flag):
+ data_set, data_loader = data_provider(self.args, flag)
+ return data_set, data_loader
+
+ def _select_optimizer(self):
+ model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate)
+ return model_optim
+
+ def _select_criterion(self):
+ criterion = nn.MSELoss()
+ return criterion
+
+ def vali(self, vali_data, vali_loader, criterion):
+ total_loss = []
+ self.model.eval()
+ with torch.no_grad():
+ for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(vali_loader):
+ batch_x = batch_x.float().to(self.device)
+ batch_y = batch_y.float()
+
+ batch_x_mark = batch_x_mark.float().to(self.device)
+ batch_y_mark = batch_y_mark.float().to(self.device)
+
+ # decoder input
+ dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
+ dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
+ # encoder - decoder
+ if self.args.use_amp:
+ with torch.cuda.amp.autocast():
+ if self.args.output_attention:
+ outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0]
+ else:
+ outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
+ else:
+ if self.args.output_attention:
+ outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0]
+ else:
+ outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
+ f_dim = -1 if self.args.features == 'MS' else 0
+ outputs = outputs[:, -self.args.pred_len:, f_dim:]
+ batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
+
+ pred = outputs.detach().cpu()
+ true = batch_y.detach().cpu()
+
+ loss = criterion(pred, true)
+
+ total_loss.append(loss)
+ total_loss = np.average(total_loss)
+ self.model.train()
+ return total_loss
+
+ def train(self, setting):
+ train_data, train_loader = self._get_data(flag='train')
+ vali_data, vali_loader = self._get_data(flag='val')
+ test_data, test_loader = self._get_data(flag='test')
+
+ path = os.path.join(self.args.checkpoints, setting)
+ if not os.path.exists(path):
+ os.makedirs(path)
+
+ time_now = time.time()
+
+ train_steps = len(train_loader)
+ early_stopping = EarlyStopping(patience=self.args.patience, verbose=True)
+
+ model_optim = self._select_optimizer()
+ criterion = self._select_criterion()
+
+ if self.args.use_amp:
+ scaler = torch.cuda.amp.GradScaler()
+
+ for epoch in range(self.args.train_epochs):
+ iter_count = 0
+ train_loss = []
+
+ self.model.train()
+ epoch_time = time.time()
+ for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(train_loader):
+ iter_count += 1
+ model_optim.zero_grad()
+ batch_x = batch_x.float().to(self.device)
+ batch_y = batch_y.float().to(self.device)
+ batch_x_mark = batch_x_mark.float().to(self.device)
+ batch_y_mark = batch_y_mark.float().to(self.device)
+
+ # decoder input
+ dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
+ dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
+
+ # encoder - decoder
+ if self.args.use_amp:
+ with torch.cuda.amp.autocast():
+ if self.args.output_attention:
+ outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0]
+ else:
+ outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
+
+ f_dim = -1 if self.args.features == 'MS' else 0
+ outputs = outputs[:, -self.args.pred_len:, f_dim:]
+ batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
+ loss = criterion(outputs, batch_y)
+ train_loss.append(loss.item())
+ else:
+ if self.args.output_attention:
+ outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0]
+ else:
+ outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
+
+ f_dim = -1 if self.args.features == 'MS' else 0
+ outputs = outputs[:, -self.args.pred_len:, f_dim:]
+ batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
+ loss = criterion(outputs, batch_y)
+ train_loss.append(loss.item())
+
+ if (i + 1) % 100 == 0:
+ print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item()))
+ speed = (time.time() - time_now) / iter_count
+ left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i)
+ print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time))
+ iter_count = 0
+ time_now = time.time()
+
+ if self.args.use_amp:
+ scaler.scale(loss).backward()
+ scaler.step(model_optim)
+ scaler.update()
+ else:
+ loss.backward()
+ model_optim.step()
+
+ print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time))
+ train_loss = np.average(train_loss)
+ vali_loss = self.vali(vali_data, vali_loader, criterion)
+ test_loss = self.vali(test_data, test_loader, criterion)
+
+ print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format(
+ epoch + 1, train_steps, train_loss, vali_loss, test_loss))
+ early_stopping(vali_loss, self.model, path)
+ if early_stopping.early_stop:
+ print("Early stopping")
+ break
+
+ adjust_learning_rate(model_optim, epoch + 1, self.args)
+
+ best_model_path = path + '/' + 'checkpoint.pth'
+ self.model.load_state_dict(torch.load(best_model_path))
+
+ return self.model
+
+ def test(self, setting, test=0):
+ test_data, test_loader = self._get_data(flag='test')
+ if test:
+ print('loading model')
+ self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth')))
+
+ preds = []
+ trues = []
+ folder_path = './out/test_results/' + setting + '/'
+ if not os.path.exists(folder_path):
+ os.makedirs(folder_path)
+
+ self.model.eval()
+ with torch.no_grad():
+ for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(test_loader):
+ batch_x = batch_x.float().to(self.device)
+ batch_y = batch_y.float().to(self.device)
+
+ batch_x_mark = batch_x_mark.float().to(self.device)
+ batch_y_mark = batch_y_mark.float().to(self.device)
+
+ # decoder input
+ dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
+ dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
+ # encoder - decoder
+ if self.args.use_amp:
+ with torch.cuda.amp.autocast():
+ if self.args.output_attention:
+ outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0]
+ else:
+ outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
+ else:
+ if self.args.output_attention:
+ outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0]
+
+ else:
+ outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
+
+ f_dim = -1 if self.args.features == 'MS' else 0
+ outputs = outputs[:, -self.args.pred_len:, :]
+ batch_y = batch_y[:, -self.args.pred_len:, :].to(self.device)
+ outputs = outputs.detach().cpu().numpy()
+ batch_y = batch_y.detach().cpu().numpy()
+ if test_data.scale and self.args.inverse:
+ shape = outputs.shape
+ outputs = test_data.inverse_transform(outputs.squeeze(0)).reshape(shape)
+ batch_y = test_data.inverse_transform(batch_y.squeeze(0)).reshape(shape)
+
+ outputs = outputs[:, :, f_dim:]
+ batch_y = batch_y[:, :, f_dim:]
+
+ pred = outputs
+ true = batch_y
+
+ preds.append(pred)
+ trues.append(true)
+ if i % 20 == 0:
+ input = batch_x.detach().cpu().numpy()
+ if test_data.scale and self.args.inverse:
+ shape = input.shape
+ input = test_data.inverse_transform(input.squeeze(0)).reshape(shape)
+ gt = np.concatenate((input[0, :, -1], true[0, :, -1]), axis=0)
+ pd = np.concatenate((input[0, :, -1], pred[0, :, -1]), axis=0)
+ visual(gt, pd, os.path.join(folder_path, str(i) + '.pdf'))
+
+ preds = np.array(preds)
+ trues = np.array(trues)
+ print('test shape:', preds.shape, trues.shape)
+ preds = preds.reshape(-1, preds.shape[-2], preds.shape[-1])
+ trues = trues.reshape(-1, trues.shape[-2], trues.shape[-1])
+ print('test shape:', preds.shape, trues.shape)
+
+ # result save
+ folder_path = './out/results/' + setting + '/'
+ if not os.path.exists(folder_path):
+ os.makedirs(folder_path)
+
+ # dtw calculation
+ if self.args.use_dtw:
+ dtw_list = []
+ manhattan_distance = lambda x, y: np.abs(x - y)
+ for i in range(preds.shape[0]):
+ x = preds[i].reshape(-1, 1)
+ y = trues[i].reshape(-1, 1)
+ if i % 100 == 0:
+ print("calculating dtw iter:", i)
+ d, _, _, _ = accelerated_dtw(x, y, dist=manhattan_distance)
+ dtw_list.append(d)
+ dtw = np.array(dtw_list).mean()
+ else:
+ dtw = -999
+
+ mae, mse, rmse, mape, mspe = metric(preds, trues)
+ print('mse:{}, mae:{}, dtw:{}'.format(mse, mae, dtw))
+ f = open("./out/result/result_long_term_forecast.txt", 'a')
+ f.write(setting + " \n")
+ f.write('mse:{}, mae:{}, dtw:{}'.format(mse, mae, dtw))
+ f.write('\n')
+ f.write('\n')
+ f.close()
+
+ np.save(folder_path + 'metrics.npy', np.array([mae, mse, rmse, mape, mspe]))
+ np.save(folder_path + 'pred.npy', preds)
+ np.save(folder_path + 'true.npy', trues)
+
+ return
diff --git a/fig/CBV.png b/fig/CBV.png
new file mode 100644
index 0000000..043f390
Binary files /dev/null and b/fig/CBV.png differ
diff --git a/fig/TBV.png b/fig/TBV.png
new file mode 100644
index 0000000..d2b0cdd
Binary files /dev/null and b/fig/TBV.png differ
diff --git a/fig/TEFN.png b/fig/TEFN.png
new file mode 100644
index 0000000..61d5aac
Binary files /dev/null and b/fig/TEFN.png differ
diff --git a/fig/bpa.png b/fig/bpa.png
new file mode 100644
index 0000000..4b7d406
Binary files /dev/null and b/fig/bpa.png differ
diff --git a/fig/inver_conv.png b/fig/inver_conv.png
new file mode 100644
index 0000000..93f9f16
Binary files /dev/null and b/fig/inver_conv.png differ
diff --git a/fig/ms.png b/fig/ms.png
new file mode 100644
index 0000000..38fee29
Binary files /dev/null and b/fig/ms.png differ
diff --git a/fig/size.png b/fig/size.png
new file mode 100644
index 0000000..42c1e8d
Binary files /dev/null and b/fig/size.png differ
diff --git a/fig/sota.png b/fig/sota.png
new file mode 100644
index 0000000..96cbfc2
Binary files /dev/null and b/fig/sota.png differ
diff --git a/fig/var.png b/fig/var.png
new file mode 100644
index 0000000..7348b00
Binary files /dev/null and b/fig/var.png differ
diff --git a/fig/vr.png b/fig/vr.png
new file mode 100644
index 0000000..ba3588d
Binary files /dev/null and b/fig/vr.png differ
diff --git a/models/TEFN.py b/models/TEFN.py
new file mode 100644
index 0000000..24045a9
--- /dev/null
+++ b/models/TEFN.py
@@ -0,0 +1,65 @@
+import torch
+import torch.nn as nn
+
+
+class NormLayer(nn.Module):
+ def __init__(self):
+ super(NormLayer, self).__init__()
+ self.means = None
+ self.stds = None
+
+ def norm(self, x):
+ self.means = x.mean(1, keepdim=True).detach() # B x 1 x E
+ x = x - self.means
+ self.stds = torch.sqrt(torch.var(x, dim=1, keepdim=True, unbiased=False) + 1e-5).detach() # B x 1 x E
+ x = x / self.stds
+ return x
+
+ def denorm(self, x):
+ x = x * self.stds + self.means
+ return x
+
+
+class EvidenceMachineKernel(nn.Module):
+ def __init__(self, C, F):
+ super(EvidenceMachineKernel, self).__init__()
+ self.C = C
+ self.F = 2 ** F
+ self.C_weight = nn.Parameter(torch.randn(self.C, self.F))
+ self.C_bias = nn.Parameter(torch.randn(self.C, self.F))
+
+ def forward(self, x):
+ x = torch.einsum('btc,cf->btcf', x, self.C_weight) + self.C_bias
+ return x
+
+
+class Model(nn.Module):
+
+ def __init__(self, configs):
+ super(Model, self).__init__()
+ self.configs = configs
+ self.task_name = configs.task_name
+ self.seq_len = configs.seq_len
+ self.label_len = configs.label_len
+ self.pred_len = configs.pred_len
+ if self.task_name.startswith('long_term_forecast') or self.task_name == 'short_term_forecast':
+ self.nl = NormLayer()
+ self.predict_linear = nn.Linear(
+ self.seq_len, self.pred_len + self.seq_len)
+ self.T_model = EvidenceMachineKernel(self.pred_len + self.seq_len, self.configs.e_layers)
+ self.C_model = EvidenceMachineKernel(self.configs.enc_in, self.configs.e_layers)
+
+ def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
+ # x_enc [B, T, C]
+ x = self.nl.norm(x_enc)
+ # x [B, T, C]
+ x = self.predict_linear(x.permute(0, 2, 1)).permute(0, 2, 1)
+ x = self.T_model(x.permute(0, 2, 1)).permute(0, 2, 1, 3) + self.C_model(x)
+ x = torch.einsum('btcf->btc', x)
+ x = self.nl.denorm(x)
+ return x
+
+ def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
+ if self.task_name.startswith('long_term_forecast'):
+ dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
+ return dec_out[:, -self.pred_len:, :] # [B, L, D]
diff --git a/models/TEFN_ac.py b/models/TEFN_ac.py
new file mode 100644
index 0000000..74f8095
--- /dev/null
+++ b/models/TEFN_ac.py
@@ -0,0 +1,64 @@
+import torch
+import torch.nn as nn
+
+
+class NormLayer(nn.Module):
+ def __init__(self):
+ super(NormLayer, self).__init__()
+ self.means = None
+ self.stds = None
+
+ def norm(self, x):
+ self.means = x.mean(1, keepdim=True).detach() # B x 1 x E
+ x = x - self.means
+ self.stds = torch.sqrt(torch.var(x, dim=1, keepdim=True, unbiased=False) + 1e-5).detach() # B x 1 x E
+ x = x / self.stds
+ return x
+
+ def denorm(self, x):
+ x = x * self.stds + self.means
+ return x
+
+
+class EvidenceMachineKernel(nn.Module):
+ def __init__(self, C, F):
+ super(EvidenceMachineKernel, self).__init__()
+ self.C = C
+ self.F = 2 ** F
+ self.C_weight = nn.Parameter(torch.randn(self.C, self.F))
+ self.C_bias = nn.Parameter(torch.randn(self.C, self.F))
+
+ def forward(self, x):
+ x = torch.einsum('btc,cf->btcf', x, self.C_weight) + self.C_bias
+ return x
+
+
+class Model(nn.Module):
+
+ def __init__(self, configs):
+ super(Model, self).__init__()
+ self.configs = configs
+ self.task_name = configs.task_name
+ self.seq_len = configs.seq_len
+ self.label_len = configs.label_len
+ self.pred_len = configs.pred_len
+ if self.task_name.startswith('long_term_forecast') or self.task_name == 'short_term_forecast':
+ self.nl = NormLayer()
+ self.predict_linear = nn.Linear(
+ self.seq_len, self.pred_len + self.seq_len)
+ self.C_model = EvidenceMachineKernel(self.configs.enc_in, self.configs.e_layers)
+
+ def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
+ # x_enc [B, T, C]
+ x = self.nl.norm(x_enc)
+ # x [B, T, C]
+ x = self.predict_linear(x.permute(0, 2, 1)).permute(0, 2, 1)
+ x = self.C_model(x)
+ x = torch.einsum('btcf->btc', x)
+ x = self.nl.denorm(x)
+ return x
+
+ def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
+ if self.task_name.startswith('long_term_forecast'):
+ dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
+ return dec_out[:, -self.pred_len:, :] # [B, L, D]
diff --git a/models/TEFN_at.py b/models/TEFN_at.py
new file mode 100644
index 0000000..aa0509a
--- /dev/null
+++ b/models/TEFN_at.py
@@ -0,0 +1,64 @@
+import torch
+import torch.nn as nn
+
+
+class NormLayer(nn.Module):
+ def __init__(self):
+ super(NormLayer, self).__init__()
+ self.means = None
+ self.stds = None
+
+ def norm(self, x):
+ self.means = x.mean(1, keepdim=True).detach() # B x 1 x E
+ x = x - self.means
+ self.stds = torch.sqrt(torch.var(x, dim=1, keepdim=True, unbiased=False) + 1e-5).detach() # B x 1 x E
+ x = x / self.stds
+ return x
+
+ def denorm(self, x):
+ x = x * self.stds + self.means
+ return x
+
+
+class EvidenceMachineKernel(nn.Module):
+ def __init__(self, C, F):
+ super(EvidenceMachineKernel, self).__init__()
+ self.C = C
+ self.F = 2 ** F
+ self.C_weight = nn.Parameter(torch.randn(self.C, self.F))
+ self.C_bias = nn.Parameter(torch.randn(self.C, self.F))
+
+ def forward(self, x):
+ x = torch.einsum('btc,cf->btcf', x, self.C_weight) + self.C_bias
+ return x
+
+
+class Model(nn.Module):
+
+ def __init__(self, configs):
+ super(Model, self).__init__()
+ self.configs = configs
+ self.task_name = configs.task_name
+ self.seq_len = configs.seq_len
+ self.label_len = configs.label_len
+ self.pred_len = configs.pred_len
+ if self.task_name.startswith('long_term_forecast') or self.task_name == 'short_term_forecast':
+ self.nl = NormLayer()
+ self.predict_linear = nn.Linear(
+ self.seq_len, self.pred_len + self.seq_len)
+ self.T_model = EvidenceMachineKernel(self.pred_len + self.seq_len, self.configs.e_layers)
+
+ def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
+ # x_enc [B, T, C]
+ x = self.nl.norm(x_enc)
+ # x [B, T, C]
+ x = self.predict_linear(x.permute(0, 2, 1)).permute(0, 2, 1)
+ x = self.T_model(x.permute(0, 2, 1)).permute(0, 2, 1, 3)
+ x = torch.einsum('btcf->btc', x)
+ x = self.nl.denorm(x)
+ return x
+
+ def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
+ if self.task_name.startswith('long_term_forecast'):
+ dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
+ return dec_out[:, -self.pred_len:, :] # [B, L, D]
diff --git a/models/__init__.py b/models/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/pull.sh b/pull.sh
new file mode 100644
index 0000000..724e698
--- /dev/null
+++ b/pull.sh
@@ -0,0 +1 @@
+git pull origin master
\ No newline at end of file
diff --git a/push.sh b/push.sh
new file mode 100644
index 0000000..2502b75
--- /dev/null
+++ b/push.sh
@@ -0,0 +1,4 @@
+git add .
+cur=$(date +"%Y-%m-%d %H:%M:%S")
+git commit -m "${cur}"
+git push origin master
\ No newline at end of file
diff --git a/readme.md b/readme.md
new file mode 100644
index 0000000..e40468b
--- /dev/null
+++ b/readme.md
@@ -0,0 +1,86 @@
+# Time-Evidence Fusion Network (TEFN): A Novel Backbone for Time Series Forecasting
+
+## Overview
+This is the official code implementation project for paper **"Time Evidence Fusion Network: Multi-source View in Long-Term Time Series Forecasting"**. The code implementation refers to [Time-Series-Library](https://github.com/thuml/Time-Series-Library). Thanks very much for [Time-Series-Library](https://github.com/thuml/Time-Series-Library)'s contribution to this project.
+
+
+The **Time-Evidence Fusion Network (TEFN)** is a groundbreaking deep learning model designed for long-term time series forecasting. It integrates the principles of information fusion and evidence theory to achieve superior performance in real-world applications where timely predictions are crucial. TEFN introduces the Basic Probability Assignment (BPA) Module, leveraging fuzzy theory, and the Time Evidence Fusion Network to enhance prediction accuracy, stability, and interpretability.
+
+## Key Features
+
+- **Information Fusion Perspective**: TEFN addresses time series forecasting from a unique angle, focusing on the fusion of multi-source information to boost prediction accuracy.
+
+- **BPA Module**: At its core, TEFN incorporates a BPA Module that maps diverse information sources to probability distributions related to the target outcome. This module exploits the interpretability of evidence theory, using fuzzy membership functions to represent uncertainty in predictions.
+
+
+- **Interpretability**: Due to its roots in fuzzy logic, TEFN provides clear insights into the decision-making process, enhancing model explainability.
+
+
+- **State-of-the-Art Performance**: TEFN demonstrates competitive results, with prediction errors comparable to leading models like PatchTST, while maintaining high efficiency and requiring fewer parameters than complex models such as Dlinear.
+
+- **Robustness and Stability**: The model showcases resilience to hyperparameter tuning, exhibiting minimal fluctuations even under random selections, ensuring consistent performance across various settings.
+
+
+- **Efficiency**: With optimized training times and a compact model footprint, TEFN is particularly suitable for resource-constrained environments.
+
+
+## Getting Started
+
+### Requirements
+
+- Python >= 3.6
+- PyTorch >= 1.7.0
+- Other dependencies listed in `requirements.txt`
+
+### Installation
+
+Clone the repository:
+
+```bash
+git clone https://github.com/ztxtech/Time-Evidence-Fusion-Network.git
+cd Time-Evidence-Fusion-Network
+pip install -r requirements.txt
+```
+
+### Usage
+
+### Download Dataset
+
+You can obtain datasets from [[Google Drive]](https://drive.google.com/drive/folders/13Cg1KYOlzM5C7K8gK8NfC-F3EYxkM3D2?usp=sharing) or [[Baidu Drive]](https://pan.baidu.com/s/1r3KhGd0Q9PJIUZdfEYoymg?pwd=i9iy), Then place the downloaded data in the folder`./dataset`.
+
+#### Load Config
+
+The development of this project was modified from [Time-Series-Library](https://github.com/thuml/Time-Series-Library). Thanks very much for [Time-Series-Library](https://github.com/thuml/Time-Series-Library) open source code.
+
+1. Modify the specific configuration file in `./run_config.py`.
+
+```python
+config_path = '{your chosen config file path}'
+```
+2. Run `./run_config.py` directly.
+```bash
+python run_config.py
+```
+
+#### Other Operations
+
+Other related operations refer to [Time-Series-Library](https://github.com/thuml/Time-Series-Library).
+
+
+#### Citation
+
+If you find TEFN useful in your research, please cite our work as per the citation.
+
+```bibtex
+
+
+```
+
+## Contact
+
+
+If you have any questions or suggestions, feel free to contact:
+
+Tianxiang Zhan [(zhantianxianguestc@hotmail.com)](mailto:zhantianxianguestc@hotmail.com)
+
+Or describe it in Issues.
\ No newline at end of file
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000..49bb4a3
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,12 @@
+einops==0.4.0
+matplotlib==3.7.0
+numpy==1.23.5
+pandas==1.5.3
+patool==1.12
+reformer-pytorch==1.4.4
+scikit-learn==1.2.2
+scipy==1.10.1
+sktime==0.16.1
+sympy==1.11.1
+torch==1.7.1
+tqdm==4.64.1
\ No newline at end of file
diff --git a/run.py b/run.py
new file mode 100644
index 0000000..95f1136
--- /dev/null
+++ b/run.py
@@ -0,0 +1,215 @@
+import argparse
+import random
+
+import numpy as np
+import torch
+
+from exp.exp_long_term_forecasting import Exp_Long_Term_Forecast
+from utils.print_args import print_args
+
+
+def get_args():
+ parser = argparse.ArgumentParser(description='TEFN')
+
+ # basic config
+ parser.add_argument('--task_name', type=str, required=True, default='long_term_forecast',
+ help='task name, options:[long_term_forecast, short_term_forecast, imputation, classification, anomaly_detection]')
+ parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
+ parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
+ parser.add_argument('--model', type=str, required=True, default='Autoformer',
+ help='model name, options: [Autoformer, Transformer, TimesNet]')
+
+ # data loader
+ parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
+ parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
+ parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
+ parser.add_argument('--features', type=str, default='M',
+ help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
+ parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
+ parser.add_argument('--freq', type=str, default='h',
+ help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
+ parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
+
+ # forecasting task
+ parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
+ parser.add_argument('--label_len', type=int, default=48, help='start token length')
+ parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
+ parser.add_argument('--seasonal_patterns', type=str, default='Monthly', help='subset for M4')
+ parser.add_argument('--inverse', action='store_true', help='inverse output data', default=False)
+
+ # inputation task
+ parser.add_argument('--mask_rate', type=float, default=0.25, help='mask ratio')
+
+ # anomaly detection task
+ parser.add_argument('--anomaly_ratio', type=float, default=0.25, help='prior anomaly ratio (%)')
+
+ # model define
+ parser.add_argument('--expand', type=int, default=2, help='expansion factor for Mamba')
+ parser.add_argument('--d_conv', type=int, default=4, help='conv kernel size for Mamba')
+ parser.add_argument('--top_k', type=int, default=5, help='for TimesBlock')
+ parser.add_argument('--num_kernels', type=int, default=6, help='for Inception')
+ parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
+ parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
+ parser.add_argument('--c_out', type=int, default=7, help='output size')
+ parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
+ parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
+ parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
+ parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
+ parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
+ parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
+ parser.add_argument('--factor', type=int, default=1, help='attn factor')
+ parser.add_argument('--distil', action='store_false',
+ help='whether to use distilling in encoder, using this argument means not using distilling',
+ default=True)
+ parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
+ parser.add_argument('--embed', type=str, default='timeF',
+ help='time features encoding, options:[timeF, fixed, learned]')
+ parser.add_argument('--activation', type=str, default='gelu', help='activation')
+ parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
+ parser.add_argument('--channel_independence', type=int, default=1,
+ help='0: channel dependence 1: channel independence for FreTS model')
+ parser.add_argument('--decomp_method', type=str, default='moving_avg',
+ help='method of series decompsition, only support moving_avg or dft_decomp')
+ parser.add_argument('--use_norm', type=int, default=1, help='whether to use normalize; True 1 False 0')
+ parser.add_argument('--down_sampling_layers', type=int, default=0, help='num of down sampling layers')
+ parser.add_argument('--down_sampling_window', type=int, default=1, help='down sampling window size')
+ parser.add_argument('--down_sampling_method', type=str, default=None,
+ help='down sampling method, only support avg, max, conv')
+ parser.add_argument('--seg_len', type=int, default=48,
+ help='the length of segmen-wise iteration of SegRNN')
+
+ # optimization
+ parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
+ parser.add_argument('--itr', type=int, default=1, help='experiments times')
+ parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
+ parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
+ parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
+ parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
+ parser.add_argument('--des', type=str, default='test', help='exp description')
+ parser.add_argument('--loss', type=str, default='MSE', help='loss function')
+ parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
+ parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
+
+ # GPU
+ parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
+ parser.add_argument('--gpu', type=int, default=0, help='gpu')
+ parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
+ parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
+
+ # de-stationary projector params
+ parser.add_argument('--p_hidden_dims', type=int, nargs='+', default=[128, 128],
+ help='hidden layer dimensions of projector (List)')
+ parser.add_argument('--p_hidden_layers', type=int, default=2, help='number of hidden layers in projector')
+
+ # metrics (dtw)
+ parser.add_argument('--use_dtw', type=bool, default=False,
+ help='the controller of using dtw metric (dtw is time consuming, not suggested unless necessary)')
+
+ # Augmentation
+ parser.add_argument('--augmentation_ratio', type=int, default=0, help="How many times to augment")
+ parser.add_argument('--seed', type=int, default=2, help="Randomization seed")
+ parser.add_argument('--jitter', default=False, action="store_true", help="Jitter preset augmentation")
+ parser.add_argument('--scaling', default=False, action="store_true", help="Scaling preset augmentation")
+ parser.add_argument('--permutation', default=False, action="store_true",
+ help="Equal Length Permutation preset augmentation")
+ parser.add_argument('--randompermutation', default=False, action="store_true",
+ help="Random Length Permutation preset augmentation")
+ parser.add_argument('--magwarp', default=False, action="store_true", help="Magnitude warp preset augmentation")
+ parser.add_argument('--timewarp', default=False, action="store_true", help="Time warp preset augmentation")
+ parser.add_argument('--windowslice', default=False, action="store_true", help="Window slice preset augmentation")
+ parser.add_argument('--windowwarp', default=False, action="store_true", help="Window warp preset augmentation")
+ parser.add_argument('--rotation', default=False, action="store_true", help="Rotation preset augmentation")
+ parser.add_argument('--spawner', default=False, action="store_true", help="SPAWNER preset augmentation")
+ parser.add_argument('--dtwwarp', default=False, action="store_true", help="DTW warp preset augmentation")
+ parser.add_argument('--shapedtwwarp', default=False, action="store_true", help="Shape DTW warp preset augmentation")
+ parser.add_argument('--wdba', default=False, action="store_true", help="Weighted DBA preset augmentation")
+ parser.add_argument('--discdtw', default=False, action="store_true",
+ help="Discrimitive DTW warp preset augmentation")
+ parser.add_argument('--discsdtw', default=False, action="store_true",
+ help="Discrimitive shapeDTW warp preset augmentation")
+ parser.add_argument('--extra_tag', type=str, default="", help="Anything extra")
+
+ args = parser.parse_args()
+ return args
+
+
+if __name__ == '__main__':
+ fix_seed = 2021
+ random.seed(fix_seed)
+ torch.manual_seed(fix_seed)
+ np.random.seed(fix_seed)
+ args = get_args()
+ args.use_gpu = True if torch.cuda.is_available() else False
+
+ print(torch.cuda.is_available())
+
+ if args.use_gpu and args.use_multi_gpu:
+ args.devices = args.devices.replace(' ', '')
+ device_ids = args.devices.split(',')
+ args.device_ids = [int(id_) for id_ in device_ids]
+ args.gpu = args.device_ids[0]
+
+ print('Args in experiment:')
+ print_args(args)
+
+ if args.task_name == 'long_term_forecast':
+ Exp = Exp_Long_Term_Forecast
+
+ if args.is_training:
+ for ii in range(args.itr):
+ # setting record of experiments
+ exp = Exp(args) # set experiments
+ setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_expand{}_dc{}_fc{}_eb{}_dt{}_{}_{}'.format(
+ args.task_name,
+ args.model_id,
+ args.model,
+ args.data,
+ args.features,
+ args.seq_len,
+ args.label_len,
+ args.pred_len,
+ args.d_model,
+ args.n_heads,
+ args.e_layers,
+ args.d_layers,
+ args.d_ff,
+ args.expand,
+ args.d_conv,
+ args.factor,
+ args.embed,
+ args.distil,
+ args.des, ii)
+
+ print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
+ exp.train(setting)
+
+ print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
+ exp.test(setting)
+ torch.cuda.empty_cache()
+ else:
+ ii = 0
+ setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_expand{}_dc{}_fc{}_eb{}_dt{}_{}_{}'.format(
+ args.task_name,
+ args.model_id,
+ args.model,
+ args.data,
+ args.features,
+ args.seq_len,
+ args.label_len,
+ args.pred_len,
+ args.d_model,
+ args.n_heads,
+ args.e_layers,
+ args.d_layers,
+ args.d_ff,
+ args.expand,
+ args.d_conv,
+ args.factor,
+ args.embed,
+ args.distil,
+ args.des, ii)
+
+ exp = Exp(args) # set experiments
+ print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
+ exp.test(setting, test=1)
+ torch.cuda.empty_cache()
diff --git a/run_config.py b/run_config.py
new file mode 100644
index 0000000..148cd79
--- /dev/null
+++ b/run_config.py
@@ -0,0 +1,194 @@
+import argparse
+import json
+import random
+
+import numpy as np
+import torch
+
+from exp.exp_long_term_forecasting import Exp_Long_Term_Forecast
+from utils.print_args import print_args
+
+
+def get_args():
+ parser = argparse.ArgumentParser(description='TEFN')
+
+ # model define
+ parser.add_argument('--expand', type=int, default=2, help='expansion factor for Mamba')
+ parser.add_argument('--d_conv', type=int, default=4, help='conv kernel size for Mamba')
+ parser.add_argument('--top_k', type=int, default=5, help='for TimesBlock')
+ parser.add_argument('--num_kernels', type=int, default=6, help='for Inception')
+ parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
+ parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
+ parser.add_argument('--c_out', type=int, default=7, help='output size')
+ parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
+ parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
+ parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
+ parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
+ parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
+ parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
+ parser.add_argument('--factor', type=int, default=1, help='attn factor')
+ parser.add_argument('--distil', action='store_false',
+ help='whether to use distilling in encoder, using this argument means not using distilling',
+ default=True)
+ parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
+ parser.add_argument('--embed', type=str, default='timeF',
+ help='time features encoding, options:[timeF, fixed, learned]')
+ parser.add_argument('--activation', type=str, default='gelu', help='activation')
+ parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
+ parser.add_argument('--channel_independence', type=int, default=1,
+ help='0: channel dependence 1: channel independence for FreTS model')
+ parser.add_argument('--decomp_method', type=str, default='moving_avg',
+ help='method of series decompsition, only support moving_avg or dft_decomp')
+ parser.add_argument('--use_norm', type=int, default=1, help='whether to use normalize; True 1 False 0')
+ parser.add_argument('--down_sampling_layers', type=int, default=0, help='num of down sampling layers')
+ parser.add_argument('--down_sampling_window', type=int, default=1, help='down sampling window size')
+ parser.add_argument('--down_sampling_method', type=str, default=None,
+ help='down sampling method, only support avg, max, conv')
+ parser.add_argument('--seg_len', type=int, default=48,
+ help='the length of segmen-wise iteration of SegRNN')
+
+ # optimization
+ parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
+ parser.add_argument('--itr', type=int, default=1, help='experiments times')
+ parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
+ parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
+ parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
+ parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
+ parser.add_argument('--des', type=str, default='test', help='exp description')
+ parser.add_argument('--loss', type=str, default='MSE', help='loss function')
+ parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
+ parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
+
+ # GPU
+ parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
+ parser.add_argument('--gpu', type=int, default=0, help='gpu')
+ parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
+ parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
+
+ # de-stationary projector params
+ parser.add_argument('--p_hidden_dims', type=int, nargs='+', default=[128, 128],
+ help='hidden layer dimensions of projector (List)')
+ parser.add_argument('--p_hidden_layers', type=int, default=2, help='number of hidden layers in projector')
+
+ # metrics (dtw)
+ parser.add_argument('--use_dtw', type=bool, default=False,
+ help='the controller of using dtw metric (dtw is time consuming, not suggested unless necessary)')
+
+ # Augmentation
+ parser.add_argument('--augmentation_ratio', type=int, default=0, help="How many times to augment")
+ parser.add_argument('--seed', type=int, default=2, help="Randomization seed")
+ parser.add_argument('--jitter', default=False, action="store_true", help="Jitter preset augmentation")
+ parser.add_argument('--scaling', default=False, action="store_true", help="Scaling preset augmentation")
+ parser.add_argument('--permutation', default=False, action="store_true",
+ help="Equal Length Permutation preset augmentation")
+ parser.add_argument('--randompermutation', default=False, action="store_true",
+ help="Random Length Permutation preset augmentation")
+ parser.add_argument('--magwarp', default=False, action="store_true", help="Magnitude warp preset augmentation")
+ parser.add_argument('--timewarp', default=False, action="store_true", help="Time warp preset augmentation")
+ parser.add_argument('--windowslice', default=False, action="store_true", help="Window slice preset augmentation")
+ parser.add_argument('--windowwarp', default=False, action="store_true", help="Window warp preset augmentation")
+ parser.add_argument('--rotation', default=False, action="store_true", help="Rotation preset augmentation")
+ parser.add_argument('--spawner', default=False, action="store_true", help="SPAWNER preset augmentation")
+ parser.add_argument('--dtwwarp', default=False, action="store_true", help="DTW warp preset augmentation")
+ parser.add_argument('--shapedtwwarp', default=False, action="store_true", help="Shape DTW warp preset augmentation")
+ parser.add_argument('--wdba', default=False, action="store_true", help="Weighted DBA preset augmentation")
+ parser.add_argument('--discdtw', default=False, action="store_true",
+ help="Discrimitive DTW warp preset augmentation")
+ parser.add_argument('--discsdtw', default=False, action="store_true",
+ help="Discrimitive shapeDTW warp preset augmentation")
+ parser.add_argument('--extra_tag', type=str, default="", help="Anything extra")
+
+ args = parser.parse_args()
+ return args
+
+
+def load_config(config_path):
+ args = get_args()
+ with open(config_path, 'r') as f:
+ args_tmp = json.loads(f.read())
+ for k, v in args_tmp.items():
+ setattr(args, k, v)
+ return args
+
+
+if __name__ == '__main__':
+ fix_seed = 2021
+ random.seed(fix_seed)
+ torch.manual_seed(fix_seed)
+ np.random.seed(fix_seed)
+ config_path = '{your chosen config file path}'
+ args = load_config(config_path)
+ args.use_gpu = True if torch.cuda.is_available() else False
+
+ print(torch.cuda.is_available())
+
+ if args.use_gpu and args.use_multi_gpu:
+ args.devices = args.devices.replace(' ', '')
+ device_ids = args.devices.split(',')
+ args.device_ids = [int(id_) for id_ in device_ids]
+ args.gpu = args.device_ids[0]
+
+ print('Args in experiment:')
+ print_args(args)
+
+ if args.task_name == 'long_term_forecast':
+ Exp = Exp_Long_Term_Forecast
+
+ if args.is_training:
+ for ii in range(args.itr):
+ # setting record of experiments
+ exp = Exp(args) # set experiments
+ setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_expand{}_dc{}_fc{}_eb{}_dt{}_{}_{}'.format(
+ args.task_name,
+ args.model_id,
+ args.model,
+ args.data,
+ args.features,
+ args.seq_len,
+ args.label_len,
+ args.pred_len,
+ args.d_model,
+ args.n_heads,
+ args.e_layers,
+ args.d_layers,
+ args.d_ff,
+ args.expand,
+ args.d_conv,
+ args.factor,
+ args.embed,
+ args.distil,
+ args.des, ii)
+
+ print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
+ exp.train(setting)
+
+ print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
+ exp.test(setting)
+ torch.cuda.empty_cache()
+ else:
+ ii = 0
+ setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_expand{}_dc{}_fc{}_eb{}_dt{}_{}_{}'.format(
+ args.task_name,
+ args.model_id,
+ args.model,
+ args.data,
+ args.features,
+ args.seq_len,
+ args.label_len,
+ args.pred_len,
+ args.d_model,
+ args.n_heads,
+ args.e_layers,
+ args.d_layers,
+ args.d_ff,
+ args.expand,
+ args.d_conv,
+ args.factor,
+ args.embed,
+ args.distil,
+ args.des, ii)
+
+ exp = Exp(args) # set experiments
+ print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
+ exp.test(setting, test=1)
+ torch.cuda.empty_cache()
diff --git a/utils/__init__.py b/utils/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/utils/augmentation.py b/utils/augmentation.py
new file mode 100644
index 0000000..64b194d
--- /dev/null
+++ b/utils/augmentation.py
@@ -0,0 +1,416 @@
+import numpy as np
+from tqdm import tqdm
+
+def jitter(x, sigma=0.03):
+ # https://arxiv.org/pdf/1706.00527.pdf
+ return x + np.random.normal(loc=0., scale=sigma, size=x.shape)
+
+
+def scaling(x, sigma=0.1):
+ # https://arxiv.org/pdf/1706.00527.pdf
+ factor = np.random.normal(loc=1., scale=sigma, size=(x.shape[0],x.shape[2]))
+ return np.multiply(x, factor[:,np.newaxis,:])
+
+def rotation(x):
+ x = np.array(x)
+ flip = np.random.choice([-1, 1], size=(x.shape[0],x.shape[2]))
+ rotate_axis = np.arange(x.shape[2])
+ np.random.shuffle(rotate_axis)
+ return flip[:,np.newaxis,:] * x[:,:,rotate_axis]
+
+def permutation(x, max_segments=5, seg_mode="equal"):
+ orig_steps = np.arange(x.shape[1])
+
+ num_segs = np.random.randint(1, max_segments, size=(x.shape[0]))
+
+ ret = np.zeros_like(x)
+ for i, pat in enumerate(x):
+ if num_segs[i] > 1:
+ if seg_mode == "random":
+ split_points = np.random.choice(x.shape[1]-2, num_segs[i]-1, replace=False)
+ split_points.sort()
+ splits = np.split(orig_steps, split_points)
+ else:
+ splits = np.array_split(orig_steps, num_segs[i])
+ warp = np.concatenate(np.random.permutation(splits)).ravel()
+ # ? Question: What is the point of making segments?
+ # for i in range(len(splits)):
+ # permute = np.random.permutation(splits[i])
+
+
+ ret[i] = pat[warp]
+ else:
+ ret[i] = pat
+ return ret
+
+def magnitude_warp(x, sigma=0.2, knot=4):
+ from scipy.interpolate import CubicSpline
+ orig_steps = np.arange(x.shape[1])
+
+ random_warps = np.random.normal(loc=1.0, scale=sigma, size=(x.shape[0], knot+2, x.shape[2]))
+ warp_steps = (np.ones((x.shape[2],1))*(np.linspace(0, x.shape[1]-1., num=knot+2))).T
+ ret = np.zeros_like(x)
+ for i, pat in enumerate(x):
+ warper = np.array([CubicSpline(warp_steps[:,dim], random_warps[i,:,dim])(orig_steps) for dim in range(x.shape[2])]).T
+ ret[i] = pat * warper
+
+ return ret
+
+def time_warp(x, sigma=0.2, knot=4):
+ from scipy.interpolate import CubicSpline
+ orig_steps = np.arange(x.shape[1])
+
+ random_warps = np.random.normal(loc=1.0, scale=sigma, size=(x.shape[0], knot+2, x.shape[2]))
+ warp_steps = (np.ones((x.shape[2],1))*(np.linspace(0, x.shape[1]-1., num=knot+2))).T
+
+ ret = np.zeros_like(x)
+ for i, pat in enumerate(x):
+ for dim in range(x.shape[2]):
+ time_warp = CubicSpline(warp_steps[:,dim], warp_steps[:,dim] * random_warps[i,:,dim])(orig_steps)
+ scale = (x.shape[1]-1)/time_warp[-1]
+ ret[i,:,dim] = np.interp(orig_steps, np.clip(scale*time_warp, 0, x.shape[1]-1), pat[:,dim]).T
+ return ret
+
+def window_slice(x, reduce_ratio=0.9):
+ # https://halshs.archives-ouvertes.fr/halshs-01357973/document
+ target_len = np.ceil(reduce_ratio*x.shape[1]).astype(int)
+ if target_len >= x.shape[1]:
+ return x
+ starts = np.random.randint(low=0, high=x.shape[1]-target_len, size=(x.shape[0])).astype(int)
+ ends = (target_len + starts).astype(int)
+
+ ret = np.zeros_like(x)
+ for i, pat in enumerate(x):
+ for dim in range(x.shape[2]):
+ ret[i,:,dim] = np.interp(np.linspace(0, target_len, num=x.shape[1]), np.arange(target_len), pat[starts[i]:ends[i],dim]).T
+ return ret
+
+def window_warp(x, window_ratio=0.1, scales=[0.5, 2.]):
+ # https://halshs.archives-ouvertes.fr/halshs-01357973/document
+ warp_scales = np.random.choice(scales, x.shape[0])
+ warp_size = np.ceil(window_ratio*x.shape[1]).astype(int)
+ window_steps = np.arange(warp_size)
+
+ window_starts = np.random.randint(low=1, high=x.shape[1]-warp_size-1, size=(x.shape[0])).astype(int)
+ window_ends = (window_starts + warp_size).astype(int)
+
+ ret = np.zeros_like(x)
+ for i, pat in enumerate(x):
+ for dim in range(x.shape[2]):
+ start_seg = pat[:window_starts[i],dim]
+ window_seg = np.interp(np.linspace(0, warp_size-1, num=int(warp_size*warp_scales[i])), window_steps, pat[window_starts[i]:window_ends[i],dim])
+ end_seg = pat[window_ends[i]:,dim]
+ warped = np.concatenate((start_seg, window_seg, end_seg))
+ ret[i,:,dim] = np.interp(np.arange(x.shape[1]), np.linspace(0, x.shape[1]-1., num=warped.size), warped).T
+ return ret
+
+def spawner(x, labels, sigma=0.05, verbose=0):
+ # https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983028/
+ # use verbose=-1 to turn off warnings
+ # use verbose=1 to print out figures
+
+ import utils.dtw as dtw
+ random_points = np.random.randint(low=1, high=x.shape[1]-1, size=x.shape[0])
+ window = np.ceil(x.shape[1] / 10.).astype(int)
+ orig_steps = np.arange(x.shape[1])
+ l = np.argmax(labels, axis=1) if labels.ndim > 1 else labels
+
+ ret = np.zeros_like(x)
+ # for i, pat in enumerate(tqdm(x)):
+ for i, pat in enumerate(x):
+ # guarentees that same one isnt selected
+ choices = np.delete(np.arange(x.shape[0]), i)
+ # remove ones of different classes
+ choices = np.where(l[choices] == l[i])[0]
+ if choices.size > 0:
+ random_sample = x[np.random.choice(choices)]
+ # SPAWNER splits the path into two randomly
+ path1 = dtw.dtw(pat[:random_points[i]], random_sample[:random_points[i]], dtw.RETURN_PATH, slope_constraint="symmetric", window=window)
+ path2 = dtw.dtw(pat[random_points[i]:], random_sample[random_points[i]:], dtw.RETURN_PATH, slope_constraint="symmetric", window=window)
+ combined = np.concatenate((np.vstack(path1), np.vstack(path2+random_points[i])), axis=1)
+ if verbose:
+ # print(random_points[i])
+ dtw_value, cost, DTW_map, path = dtw.dtw(pat, random_sample, return_flag = dtw.RETURN_ALL, slope_constraint=slope_constraint, window=window)
+ dtw.draw_graph1d(cost, DTW_map, path, pat, random_sample)
+ dtw.draw_graph1d(cost, DTW_map, combined, pat, random_sample)
+ mean = np.mean([pat[combined[0]], random_sample[combined[1]]], axis=0)
+ for dim in range(x.shape[2]):
+ ret[i,:,dim] = np.interp(orig_steps, np.linspace(0, x.shape[1]-1., num=mean.shape[0]), mean[:,dim]).T
+ else:
+ # if verbose > -1:
+ # print("There is only one pattern of class {}, skipping pattern average".format(l[i]))
+ ret[i,:] = pat
+ return jitter(ret, sigma=sigma)
+
+def wdba(x, labels, batch_size=6, slope_constraint="symmetric", use_window=True, verbose=0):
+ # https://ieeexplore.ieee.org/document/8215569
+ # use verbose = -1 to turn off warnings
+ # slope_constraint is for DTW. "symmetric" or "asymmetric"
+ x = np.array(x)
+ import utils.dtw as dtw
+
+ if use_window:
+ window = np.ceil(x.shape[1] / 10.).astype(int)
+ else:
+ window = None
+ orig_steps = np.arange(x.shape[1])
+ l = np.argmax(labels, axis=1) if labels.ndim > 1 else labels
+
+ ret = np.zeros_like(x)
+ # for i in tqdm(range(ret.shape[0])):
+ for i in range(ret.shape[0]):
+ # get the same class as i
+ choices = np.where(l == l[i])[0]
+ if choices.size > 0:
+ # pick random intra-class pattern
+ k = min(choices.size, batch_size)
+ random_prototypes = x[np.random.choice(choices, k, replace=False)]
+
+ # calculate dtw between all
+ dtw_matrix = np.zeros((k, k))
+ for p, prototype in enumerate(random_prototypes):
+ for s, sample in enumerate(random_prototypes):
+ if p == s:
+ dtw_matrix[p, s] = 0.
+ else:
+ dtw_matrix[p, s] = dtw.dtw(prototype, sample, dtw.RETURN_VALUE, slope_constraint=slope_constraint, window=window)
+
+ # get medoid
+ medoid_id = np.argsort(np.sum(dtw_matrix, axis=1))[0]
+ nearest_order = np.argsort(dtw_matrix[medoid_id])
+ medoid_pattern = random_prototypes[medoid_id]
+
+ # start weighted DBA
+ average_pattern = np.zeros_like(medoid_pattern)
+ weighted_sums = np.zeros((medoid_pattern.shape[0]))
+ for nid in nearest_order:
+ if nid == medoid_id or dtw_matrix[medoid_id, nearest_order[1]] == 0.:
+ average_pattern += medoid_pattern
+ weighted_sums += np.ones_like(weighted_sums)
+ else:
+ path = dtw.dtw(medoid_pattern, random_prototypes[nid], dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window)
+ dtw_value = dtw_matrix[medoid_id, nid]
+ warped = random_prototypes[nid, path[1]]
+ weight = np.exp(np.log(0.5)*dtw_value/dtw_matrix[medoid_id, nearest_order[1]])
+ average_pattern[path[0]] += weight * warped
+ weighted_sums[path[0]] += weight
+
+ ret[i,:] = average_pattern / weighted_sums[:,np.newaxis]
+ else:
+ # if verbose > -1:
+ # print("There is only one pattern of class {}, skipping pattern average".format(l[i]))
+ ret[i,:] = x[i]
+ return ret
+
+# Proposed
+
+def random_guided_warp(x, labels, slope_constraint="symmetric", use_window=True, dtw_type="normal", verbose=0):
+ # use verbose = -1 to turn off warnings
+ # slope_constraint is for DTW. "symmetric" or "asymmetric"
+ # dtw_type is for shapeDTW or DTW. "normal" or "shape"
+
+ import utils.dtw as dtw
+
+ if use_window:
+ window = np.ceil(x.shape[1] / 10.).astype(int)
+ else:
+ window = None
+ orig_steps = np.arange(x.shape[1])
+ l = np.argmax(labels, axis=1) if labels.ndim > 1 else labels
+
+ ret = np.zeros_like(x)
+ # for i, pat in enumerate(tqdm(x)):
+ for i, pat in enumerate(x):
+ # guarentees that same one isnt selected
+ choices = np.delete(np.arange(x.shape[0]), i)
+ # remove ones of different classes
+ choices = np.where(l[choices] == l[i])[0]
+ if choices.size > 0:
+ # pick random intra-class pattern
+ random_prototype = x[np.random.choice(choices)]
+
+ if dtw_type == "shape":
+ path = dtw.shape_dtw(random_prototype, pat, dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window)
+ else:
+ path = dtw.dtw(random_prototype, pat, dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window)
+
+ # Time warp
+ warped = pat[path[1]]
+ for dim in range(x.shape[2]):
+ ret[i,:,dim] = np.interp(orig_steps, np.linspace(0, x.shape[1]-1., num=warped.shape[0]), warped[:,dim]).T
+ else:
+ # if verbose > -1:
+ # print("There is only one pattern of class {}, skipping timewarping".format(l[i]))
+ ret[i,:] = pat
+ return ret
+
+def random_guided_warp_shape(x, labels, slope_constraint="symmetric", use_window=True):
+ return random_guided_warp(x, labels, slope_constraint, use_window, dtw_type="shape")
+
+def discriminative_guided_warp(x, labels, batch_size=6, slope_constraint="symmetric", use_window=True, dtw_type="normal", use_variable_slice=True, verbose=0):
+ # use verbose = -1 to turn off warnings
+ # slope_constraint is for DTW. "symmetric" or "asymmetric"
+ # dtw_type is for shapeDTW or DTW. "normal" or "shape"
+
+ import utils.dtw as dtw
+
+ if use_window:
+ window = np.ceil(x.shape[1] / 10.).astype(int)
+ else:
+ window = None
+ orig_steps = np.arange(x.shape[1])
+ l = np.argmax(labels, axis=1) if labels.ndim > 1 else labels
+
+ positive_batch = np.ceil(batch_size / 2).astype(int)
+ negative_batch = np.floor(batch_size / 2).astype(int)
+
+ ret = np.zeros_like(x)
+ warp_amount = np.zeros(x.shape[0])
+ # for i, pat in enumerate(tqdm(x)):
+ for i, pat in enumerate(x):
+ # guarentees that same one isnt selected
+ choices = np.delete(np.arange(x.shape[0]), i)
+
+ # remove ones of different classes
+ positive = np.where(l[choices] == l[i])[0]
+ negative = np.where(l[choices] != l[i])[0]
+
+ if positive.size > 0 and negative.size > 0:
+ pos_k = min(positive.size, positive_batch)
+ neg_k = min(negative.size, negative_batch)
+ positive_prototypes = x[np.random.choice(positive, pos_k, replace=False)]
+ negative_prototypes = x[np.random.choice(negative, neg_k, replace=False)]
+
+ # vector embedding and nearest prototype in one
+ pos_aves = np.zeros((pos_k))
+ neg_aves = np.zeros((pos_k))
+ if dtw_type == "shape":
+ for p, pos_prot in enumerate(positive_prototypes):
+ for ps, pos_samp in enumerate(positive_prototypes):
+ if p != ps:
+ pos_aves[p] += (1./(pos_k-1.))*dtw.shape_dtw(pos_prot, pos_samp, dtw.RETURN_VALUE, slope_constraint=slope_constraint, window=window)
+ for ns, neg_samp in enumerate(negative_prototypes):
+ neg_aves[p] += (1./neg_k)*dtw.shape_dtw(pos_prot, neg_samp, dtw.RETURN_VALUE, slope_constraint=slope_constraint, window=window)
+ selected_id = np.argmax(neg_aves - pos_aves)
+ path = dtw.shape_dtw(positive_prototypes[selected_id], pat, dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window)
+ else:
+ for p, pos_prot in enumerate(positive_prototypes):
+ for ps, pos_samp in enumerate(positive_prototypes):
+ if p != ps:
+ pos_aves[p] += (1./(pos_k-1.))*dtw.dtw(pos_prot, pos_samp, dtw.RETURN_VALUE, slope_constraint=slope_constraint, window=window)
+ for ns, neg_samp in enumerate(negative_prototypes):
+ neg_aves[p] += (1./neg_k)*dtw.dtw(pos_prot, neg_samp, dtw.RETURN_VALUE, slope_constraint=slope_constraint, window=window)
+ selected_id = np.argmax(neg_aves - pos_aves)
+ path = dtw.dtw(positive_prototypes[selected_id], pat, dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window)
+
+ # Time warp
+ warped = pat[path[1]]
+ warp_path_interp = np.interp(orig_steps, np.linspace(0, x.shape[1]-1., num=warped.shape[0]), path[1])
+ warp_amount[i] = np.sum(np.abs(orig_steps-warp_path_interp))
+ for dim in range(x.shape[2]):
+ ret[i,:,dim] = np.interp(orig_steps, np.linspace(0, x.shape[1]-1., num=warped.shape[0]), warped[:,dim]).T
+ else:
+ # if verbose > -1:
+ # print("There is only one pattern of class {}".format(l[i]))
+ ret[i,:] = pat
+ warp_amount[i] = 0.
+ if use_variable_slice:
+ max_warp = np.max(warp_amount)
+ if max_warp == 0:
+ # unchanged
+ ret = window_slice(ret, reduce_ratio=0.9)
+ else:
+ for i, pat in enumerate(ret):
+ # Variable Sllicing
+ ret[i] = window_slice(pat[np.newaxis,:,:], reduce_ratio=0.9+0.1*warp_amount[i]/max_warp)[0]
+ return ret
+
+def discriminative_guided_warp_shape(x, labels, batch_size=6, slope_constraint="symmetric", use_window=True):
+ return discriminative_guided_warp(x, labels, batch_size, slope_constraint, use_window, dtw_type="shape")
+
+
+def run_augmentation(x, y, args):
+ print("Augmenting %s"%args.data)
+ np.random.seed(args.seed)
+ x_aug = x
+ y_aug = y
+ if args.augmentation_ratio > 0:
+ augmentation_tags = "%d"%args.augmentation_ratio
+ for n in range(args.augmentation_ratio):
+ x_temp, augmentation_tags = augment(x, y, args)
+ x_aug = np.append(x_aug, x_temp, axis=0)
+ y_aug = np.append(y_aug, y, axis=0)
+ print("Round %d: %s done"%(n, augmentation_tags))
+ if args.extra_tag:
+ augmentation_tags += "_"+args.extra_tag
+ else:
+ augmentation_tags = args.extra_tag
+ return x_aug, y_aug, augmentation_tags
+
+def run_augmentation_single(x, y, args):
+ # print("Augmenting %s"%args.data)
+ np.random.seed(args.seed)
+ x_aug = x
+ y_aug = y
+ if args.augmentation_ratio > 0:
+ augmentation_tags = "%d"%args.augmentation_ratio
+ for n in range(args.augmentation_ratio):
+ x_temp, augmentation_tags = augment(x, y, args)
+ x_aug =x_temp
+ # print("Round %d: %s done"%(n, augmentation_tags))
+ if args.extra_tag:
+ augmentation_tags += "_"+args.extra_tag
+ else:
+ augmentation_tags = args.extra_tag
+ return x_aug, y_aug, augmentation_tags
+
+
+def augment(x, y, args):
+ import utils.augmentation as aug
+ augmentation_tags = ""
+ if args.jitter:
+ x = aug.jitter(x)
+ augmentation_tags += "_jitter"
+ if args.scaling:
+ x = aug.scaling(x)
+ augmentation_tags += "_scaling"
+ if args.rotation:
+ x = aug.rotation(x)
+ augmentation_tags += "_rotation"
+ if args.permutation:
+ x = aug.permutation(x)
+ augmentation_tags += "_permutation"
+ if args.randompermutation:
+ x = aug.permutation(x, seg_mode="random")
+ augmentation_tags += "_randomperm"
+ if args.magwarp:
+ x = aug.magnitude_warp(x)
+ augmentation_tags += "_magwarp"
+ if args.timewarp:
+ x = aug.time_warp(x)
+ augmentation_tags += "_timewarp"
+ if args.windowslice:
+ x = aug.window_slice(x)
+ augmentation_tags += "_windowslice"
+ if args.windowwarp:
+ x = aug.window_warp(x)
+ augmentation_tags += "_windowwarp"
+ if args.spawner:
+ x = aug.spawner(x, y)
+ augmentation_tags += "_spawner"
+ if args.dtwwarp:
+ x = aug.random_guided_warp(x, y)
+ augmentation_tags += "_rgw"
+ if args.shapedtwwarp:
+ x = aug.random_guided_warp_shape(x, y)
+ augmentation_tags += "_rgws"
+ if args.wdba:
+ x = aug.wdba(x, y)
+ augmentation_tags += "_wdba"
+ if args.discdtw:
+ x = aug.discriminative_guided_warp(x, y)
+ augmentation_tags += "_dgw"
+ if args.discsdtw:
+ x = aug.discriminative_guided_warp_shape(x, y)
+ augmentation_tags += "_dgws"
+ return x, augmentation_tags
diff --git a/utils/dtw.py b/utils/dtw.py
new file mode 100644
index 0000000..941eae8
--- /dev/null
+++ b/utils/dtw.py
@@ -0,0 +1,223 @@
+__author__ = 'Brian Iwana'
+
+import numpy as np
+import math
+import sys
+
+RETURN_VALUE = 0
+RETURN_PATH = 1
+RETURN_ALL = -1
+
+# Core DTW
+def _traceback(DTW, slope_constraint):
+ i, j = np.array(DTW.shape) - 1
+ p, q = [i-1], [j-1]
+
+ if slope_constraint == "asymmetric":
+ while (i > 1):
+ tb = np.argmin((DTW[i-1, j], DTW[i-1, j-1], DTW[i-1, j-2]))
+
+ if (tb == 0):
+ i = i - 1
+ elif (tb == 1):
+ i = i - 1
+ j = j - 1
+ elif (tb == 2):
+ i = i - 1
+ j = j - 2
+
+ p.insert(0, i-1)
+ q.insert(0, j-1)
+ elif slope_constraint == "symmetric":
+ while (i > 1 or j > 1):
+ tb = np.argmin((DTW[i-1, j-1], DTW[i-1, j], DTW[i, j-1]))
+
+ if (tb == 0):
+ i = i - 1
+ j = j - 1
+ elif (tb == 1):
+ i = i - 1
+ elif (tb == 2):
+ j = j - 1
+
+ p.insert(0, i-1)
+ q.insert(0, j-1)
+ else:
+ sys.exit("Unknown slope constraint %s"%slope_constraint)
+
+ return (np.array(p), np.array(q))
+
+def dtw(prototype, sample, return_flag = RETURN_VALUE, slope_constraint="asymmetric", window=None):
+ """ Computes the DTW of two sequences.
+ :param prototype: np array [0..b]
+ :param sample: np array [0..t]
+ :param extended: bool
+ """
+ p = prototype.shape[0]
+ assert p != 0, "Prototype empty!"
+ s = sample.shape[0]
+ assert s != 0, "Sample empty!"
+
+ if window is None:
+ window = s
+
+ cost = np.full((p, s), np.inf)
+ for i in range(p):
+ start = max(0, i-window)
+ end = min(s, i+window)+1
+ cost[i,start:end]=np.linalg.norm(sample[start:end] - prototype[i], axis=1)
+
+ DTW = _cummulative_matrix(cost, slope_constraint, window)
+
+ if return_flag == RETURN_ALL:
+ return DTW[-1,-1], cost, DTW[1:,1:], _traceback(DTW, slope_constraint)
+ elif return_flag == RETURN_PATH:
+ return _traceback(DTW, slope_constraint)
+ else:
+ return DTW[-1,-1]
+
+def _cummulative_matrix(cost, slope_constraint, window):
+ p = cost.shape[0]
+ s = cost.shape[1]
+
+ # Note: DTW is one larger than cost and the original patterns
+ DTW = np.full((p+1, s+1), np.inf)
+
+ DTW[0, 0] = 0.0
+
+ if slope_constraint == "asymmetric":
+ for i in range(1, p+1):
+ if i <= window+1:
+ DTW[i,1] = cost[i-1,0] + min(DTW[i-1,0], DTW[i-1,1])
+ for j in range(max(2, i-window), min(s, i+window)+1):
+ DTW[i,j] = cost[i-1,j-1] + min(DTW[i-1,j-2], DTW[i-1,j-1], DTW[i-1,j])
+ elif slope_constraint == "symmetric":
+ for i in range(1, p+1):
+ for j in range(max(1, i-window), min(s, i+window)+1):
+ DTW[i,j] = cost[i-1,j-1] + min(DTW[i-1,j-1], DTW[i,j-1], DTW[i-1,j])
+ else:
+ sys.exit("Unknown slope constraint %s"%slope_constraint)
+
+ return DTW
+
+def shape_dtw(prototype, sample, return_flag = RETURN_VALUE, slope_constraint="asymmetric", window=None, descr_ratio=0.05):
+ """ Computes the shapeDTW of two sequences.
+ :param prototype: np array [0..b]
+ :param sample: np array [0..t]
+ :param extended: bool
+ """
+ # shapeDTW
+ # https://www.sciencedirect.com/science/article/pii/S0031320317303710
+
+ p = prototype.shape[0]
+ assert p != 0, "Prototype empty!"
+ s = sample.shape[0]
+ assert s != 0, "Sample empty!"
+
+ if window is None:
+ window = s
+
+ p_feature_len = np.clip(np.round(p * descr_ratio), 5, 100).astype(int)
+ s_feature_len = np.clip(np.round(s * descr_ratio), 5, 100).astype(int)
+
+ # padding
+ p_pad_front = (np.ceil(p_feature_len / 2.)).astype(int)
+ p_pad_back = (np.floor(p_feature_len / 2.)).astype(int)
+ s_pad_front = (np.ceil(s_feature_len / 2.)).astype(int)
+ s_pad_back = (np.floor(s_feature_len / 2.)).astype(int)
+
+ prototype_pad = np.pad(prototype, ((p_pad_front, p_pad_back), (0, 0)), mode="edge")
+ sample_pad = np.pad(sample, ((s_pad_front, s_pad_back), (0, 0)), mode="edge")
+ p_p = prototype_pad.shape[0]
+ s_p = sample_pad.shape[0]
+
+ cost = np.full((p, s), np.inf)
+ for i in range(p):
+ for j in range(max(0, i-window), min(s, i+window)):
+ cost[i, j] = np.linalg.norm(sample_pad[j:j+s_feature_len] - prototype_pad[i:i+p_feature_len])
+
+ DTW = _cummulative_matrix(cost, slope_constraint=slope_constraint, window=window)
+
+ if return_flag == RETURN_ALL:
+ return DTW[-1,-1], cost, DTW[1:,1:], _traceback(DTW, slope_constraint)
+ elif return_flag == RETURN_PATH:
+ return _traceback(DTW, slope_constraint)
+ else:
+ return DTW[-1,-1]
+
+# Draw helpers
+def draw_graph2d(cost, DTW, path, prototype, sample):
+ import matplotlib.pyplot as plt
+ plt.figure(figsize=(12, 8))
+ # plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01)
+
+ #cost
+ plt.subplot(2, 3, 1)
+ plt.imshow(cost.T, cmap=plt.cm.gray, interpolation='none', origin='lower')
+ plt.plot(path[0], path[1], 'y')
+ plt.xlim((-0.5, cost.shape[0]-0.5))
+ plt.ylim((-0.5, cost.shape[0]-0.5))
+
+ #dtw
+ plt.subplot(2, 3, 2)
+ plt.imshow(DTW.T, cmap=plt.cm.gray, interpolation='none', origin='lower')
+ plt.plot(path[0]+1, path[1]+1, 'y')
+ plt.xlim((-0.5, DTW.shape[0]-0.5))
+ plt.ylim((-0.5, DTW.shape[0]-0.5))
+
+ #prototype
+ plt.subplot(2, 3, 4)
+ plt.plot(prototype[:,0], prototype[:,1], 'b-o')
+
+ #connection
+ plt.subplot(2, 3, 5)
+ for i in range(0,path[0].shape[0]):
+ plt.plot([prototype[path[0][i],0], sample[path[1][i],0]],[prototype[path[0][i],1], sample[path[1][i],1]], 'y-')
+ plt.plot(sample[:,0], sample[:,1], 'g-o')
+ plt.plot(prototype[:,0], prototype[:,1], 'b-o')
+
+ #sample
+ plt.subplot(2, 3, 6)
+ plt.plot(sample[:,0], sample[:,1], 'g-o')
+
+ plt.tight_layout()
+ plt.show()
+
+def draw_graph1d(cost, DTW, path, prototype, sample):
+ import matplotlib.pyplot as plt
+ plt.figure(figsize=(12, 8))
+ # plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01)
+ p_steps = np.arange(prototype.shape[0])
+ s_steps = np.arange(sample.shape[0])
+
+ #cost
+ plt.subplot(2, 3, 1)
+ plt.imshow(cost.T, cmap=plt.cm.gray, interpolation='none', origin='lower')
+ plt.plot(path[0], path[1], 'y')
+ plt.xlim((-0.5, cost.shape[0]-0.5))
+ plt.ylim((-0.5, cost.shape[0]-0.5))
+
+ #dtw
+ plt.subplot(2, 3, 2)
+ plt.imshow(DTW.T, cmap=plt.cm.gray, interpolation='none', origin='lower')
+ plt.plot(path[0]+1, path[1]+1, 'y')
+ plt.xlim((-0.5, DTW.shape[0]-0.5))
+ plt.ylim((-0.5, DTW.shape[0]-0.5))
+
+ #prototype
+ plt.subplot(2, 3, 4)
+ plt.plot(p_steps, prototype[:,0], 'b-o')
+
+ #connection
+ plt.subplot(2, 3, 5)
+ for i in range(0,path[0].shape[0]):
+ plt.plot([path[0][i], path[1][i]],[prototype[path[0][i],0], sample[path[1][i],0]], 'y-')
+ plt.plot(p_steps, sample[:,0], 'g-o')
+ plt.plot(s_steps, prototype[:,0], 'b-o')
+
+ #sample
+ plt.subplot(2, 3, 6)
+ plt.plot(s_steps, sample[:,0], 'g-o')
+
+ plt.tight_layout()
+ plt.show()
\ No newline at end of file
diff --git a/utils/dtw_metric.py b/utils/dtw_metric.py
new file mode 100644
index 0000000..5ab39bf
--- /dev/null
+++ b/utils/dtw_metric.py
@@ -0,0 +1,156 @@
+from numpy import array, zeros, full, argmin, inf, ndim
+from scipy.spatial.distance import cdist
+from math import isinf
+
+
+def dtw(x, y, dist, warp=1, w=inf, s=1.0):
+ """
+ Computes Dynamic Time Warping (DTW) of two sequences.
+
+ :param array x: N1*M array
+ :param array y: N2*M array
+ :param func dist: distance used as cost measure
+ :param int warp: how many shifts are computed.
+ :param int w: window size limiting the maximal distance between indices of matched entries |i,j|.
+ :param float s: weight applied on off-diagonal moves of the path. As s gets larger, the warping path is increasingly biased towards the diagonal
+ Returns the minimum distance, the cost matrix, the accumulated cost matrix, and the wrap path.
+ """
+ assert len(x)
+ assert len(y)
+ assert isinf(w) or (w >= abs(len(x) - len(y)))
+ assert s > 0
+ r, c = len(x), len(y)
+ if not isinf(w):
+ D0 = full((r + 1, c + 1), inf)
+ for i in range(1, r + 1):
+ D0[i, max(1, i - w):min(c + 1, i + w + 1)] = 0
+ D0[0, 0] = 0
+ else:
+ D0 = zeros((r + 1, c + 1))
+ D0[0, 1:] = inf
+ D0[1:, 0] = inf
+ D1 = D0[1:, 1:] # view
+ for i in range(r):
+ for j in range(c):
+ if (isinf(w) or (max(0, i - w) <= j <= min(c, i + w))):
+ D1[i, j] = dist(x[i], y[j])
+ C = D1.copy()
+ jrange = range(c)
+ for i in range(r):
+ if not isinf(w):
+ jrange = range(max(0, i - w), min(c, i + w + 1))
+ for j in jrange:
+ min_list = [D0[i, j]]
+ for k in range(1, warp + 1):
+ i_k = min(i + k, r)
+ j_k = min(j + k, c)
+ min_list += [D0[i_k, j] * s, D0[i, j_k] * s]
+ D1[i, j] += min(min_list)
+ if len(x) == 1:
+ path = zeros(len(y)), range(len(y))
+ elif len(y) == 1:
+ path = range(len(x)), zeros(len(x))
+ else:
+ path = _traceback(D0)
+ return D1[-1, -1], C, D1, path
+
+
+def accelerated_dtw(x, y, dist, warp=1):
+ """
+ Computes Dynamic Time Warping (DTW) of two sequences in a faster way.
+ Instead of iterating through each element and calculating each distance,
+ this uses the cdist function from scipy (https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html)
+
+ :param array x: N1*M array
+ :param array y: N2*M array
+ :param string or func dist: distance parameter for cdist. When string is given, cdist uses optimized functions for the distance metrics.
+ If a string is passed, the distance function can be 'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'wminkowski', 'yule'.
+ :param int warp: how many shifts are computed.
+ Returns the minimum distance, the cost matrix, the accumulated cost matrix, and the wrap path.
+ """
+ assert len(x)
+ assert len(y)
+ if ndim(x) == 1:
+ x = x.reshape(-1, 1)
+ if ndim(y) == 1:
+ y = y.reshape(-1, 1)
+ r, c = len(x), len(y)
+ D0 = zeros((r + 1, c + 1))
+ D0[0, 1:] = inf
+ D0[1:, 0] = inf
+ D1 = D0[1:, 1:]
+ D0[1:, 1:] = cdist(x, y, dist)
+ C = D1.copy()
+ for i in range(r):
+ for j in range(c):
+ min_list = [D0[i, j]]
+ for k in range(1, warp + 1):
+ min_list += [D0[min(i + k, r), j],
+ D0[i, min(j + k, c)]]
+ D1[i, j] += min(min_list)
+ if len(x) == 1:
+ path = zeros(len(y)), range(len(y))
+ elif len(y) == 1:
+ path = range(len(x)), zeros(len(x))
+ else:
+ path = _traceback(D0)
+ return D1[-1, -1], C, D1, path
+
+
+def _traceback(D):
+ i, j = array(D.shape) - 2
+ p, q = [i], [j]
+ while (i > 0) or (j > 0):
+ tb = argmin((D[i, j], D[i, j + 1], D[i + 1, j]))
+ if tb == 0:
+ i -= 1
+ j -= 1
+ elif tb == 1:
+ i -= 1
+ else: # (tb == 2):
+ j -= 1
+ p.insert(0, i)
+ q.insert(0, j)
+ return array(p), array(q)
+
+
+if __name__ == '__main__':
+ w = inf
+ s = 1.0
+ if 1: # 1-D numeric
+ from sklearn.metrics.pairwise import manhattan_distances
+ x = [0, 0, 1, 1, 2, 4, 2, 1, 2, 0]
+ y = [1, 1, 1, 2, 2, 2, 2, 3, 2, 0]
+ dist_fun = manhattan_distances
+ w = 1
+ # s = 1.2
+ elif 0: # 2-D numeric
+ from sklearn.metrics.pairwise import euclidean_distances
+ x = [[0, 0], [0, 1], [1, 1], [1, 2], [2, 2], [4, 3], [2, 3], [1, 1], [2, 2], [0, 1]]
+ y = [[1, 0], [1, 1], [1, 1], [2, 1], [4, 3], [4, 3], [2, 3], [3, 1], [1, 2], [1, 0]]
+ dist_fun = euclidean_distances
+ else: # 1-D list of strings
+ from nltk.metrics.distance import edit_distance
+ # x = ['we', 'shelled', 'clams', 'for', 'the', 'chowder']
+ # y = ['class', 'too']
+ x = ['i', 'soon', 'found', 'myself', 'muttering', 'to', 'the', 'walls']
+ y = ['see', 'drown', 'himself']
+ # x = 'we talked about the situation'.split()
+ # y = 'we talked about the situation'.split()
+ dist_fun = edit_distance
+ dist, cost, acc, path = dtw(x, y, dist_fun, w=w, s=s)
+
+ # Vizualize
+ from matplotlib import pyplot as plt
+ plt.imshow(cost.T, origin='lower', cmap=plt.cm.Reds, interpolation='nearest')
+ plt.plot(path[0], path[1], '-o') # relation
+ plt.xticks(range(len(x)), x)
+ plt.yticks(range(len(y)), y)
+ plt.xlabel('x')
+ plt.ylabel('y')
+ plt.axis('tight')
+ if isinf(w):
+ plt.title('Minimum distance: {}, slope weight: {}'.format(dist, s))
+ else:
+ plt.title('Minimum distance: {}, window widht: {}, slope weight: {}'.format(dist, w, s))
+ plt.show()
\ No newline at end of file
diff --git a/utils/losses.py b/utils/losses.py
new file mode 100644
index 0000000..21438e7
--- /dev/null
+++ b/utils/losses.py
@@ -0,0 +1,89 @@
+# This source code is provided for the purposes of scientific reproducibility
+# under the following limited license from Element AI Inc. The code is an
+# implementation of the N-BEATS model (Oreshkin et al., N-BEATS: Neural basis
+# expansion analysis for interpretable time series forecasting,
+# https://arxiv.org/abs/1905.10437). The copyright to the source code is
+# licensed under the Creative Commons - Attribution-NonCommercial 4.0
+# International license (CC BY-NC 4.0):
+# https://creativecommons.org/licenses/by-nc/4.0/. Any commercial use (whether
+# for the benefit of third parties or internally in production) requires an
+# explicit license. The subject-matter of the N-BEATS model and associated
+# materials are the property of Element AI Inc. and may be subject to patent
+# protection. No license to patents is granted hereunder (whether express or
+# implied). Copyright © 2020 Element AI Inc. All rights reserved.
+
+"""
+Loss functions for PyTorch.
+"""
+
+import torch as t
+import torch.nn as nn
+import numpy as np
+import pdb
+
+
+def divide_no_nan(a, b):
+ """
+ a/b where the resulted NaN or Inf are replaced by 0.
+ """
+ result = a / b
+ result[result != result] = .0
+ result[result == np.inf] = .0
+ return result
+
+
+class mape_loss(nn.Module):
+ def __init__(self):
+ super(mape_loss, self).__init__()
+
+ def forward(self, insample: t.Tensor, freq: int,
+ forecast: t.Tensor, target: t.Tensor, mask: t.Tensor) -> t.float:
+ """
+ MAPE loss as defined in: https://en.wikipedia.org/wiki/Mean_absolute_percentage_error
+
+ :param forecast: Forecast values. Shape: batch, time
+ :param target: Target values. Shape: batch, time
+ :param mask: 0/1 mask. Shape: batch, time
+ :return: Loss value
+ """
+ weights = divide_no_nan(mask, target)
+ return t.mean(t.abs((forecast - target) * weights))
+
+
+class smape_loss(nn.Module):
+ def __init__(self):
+ super(smape_loss, self).__init__()
+
+ def forward(self, insample: t.Tensor, freq: int,
+ forecast: t.Tensor, target: t.Tensor, mask: t.Tensor) -> t.float:
+ """
+ sMAPE loss as defined in https://robjhyndman.com/hyndsight/smape/ (Makridakis 1993)
+
+ :param forecast: Forecast values. Shape: batch, time
+ :param target: Target values. Shape: batch, time
+ :param mask: 0/1 mask. Shape: batch, time
+ :return: Loss value
+ """
+ return 200 * t.mean(divide_no_nan(t.abs(forecast - target),
+ t.abs(forecast.data) + t.abs(target.data)) * mask)
+
+
+class mase_loss(nn.Module):
+ def __init__(self):
+ super(mase_loss, self).__init__()
+
+ def forward(self, insample: t.Tensor, freq: int,
+ forecast: t.Tensor, target: t.Tensor, mask: t.Tensor) -> t.float:
+ """
+ MASE loss as defined in "Scaled Errors" https://robjhyndman.com/papers/mase.pdf
+
+ :param insample: Insample values. Shape: batch, time_i
+ :param freq: Frequency value
+ :param forecast: Forecast values. Shape: batch, time_o
+ :param target: Target values. Shape: batch, time_o
+ :param mask: 0/1 mask. Shape: batch, time_o
+ :return: Loss value
+ """
+ masep = t.mean(t.abs(insample[:, freq:] - insample[:, :-freq]), dim=1)
+ masked_masep_inv = divide_no_nan(mask, masep[:, None])
+ return t.mean(t.abs(target - forecast) * masked_masep_inv)
diff --git a/utils/metrics.py b/utils/metrics.py
new file mode 100644
index 0000000..b4f5a76
--- /dev/null
+++ b/utils/metrics.py
@@ -0,0 +1,41 @@
+import numpy as np
+
+
+def RSE(pred, true):
+ return np.sqrt(np.sum((true - pred) ** 2)) / np.sqrt(np.sum((true - true.mean()) ** 2))
+
+
+def CORR(pred, true):
+ u = ((true - true.mean(0)) * (pred - pred.mean(0))).sum(0)
+ d = np.sqrt(((true - true.mean(0)) ** 2 * (pred - pred.mean(0)) ** 2).sum(0))
+ return (u / d).mean(-1)
+
+
+def MAE(pred, true):
+ return np.mean(np.abs(pred - true))
+
+
+def MSE(pred, true):
+ return np.mean((pred - true) ** 2)
+
+
+def RMSE(pred, true):
+ return np.sqrt(MSE(pred, true))
+
+
+def MAPE(pred, true):
+ return np.mean(np.abs((pred - true) / true))
+
+
+def MSPE(pred, true):
+ return np.mean(np.square((pred - true) / true))
+
+
+def metric(pred, true):
+ mae = MAE(pred, true)
+ mse = MSE(pred, true)
+ rmse = RMSE(pred, true)
+ mape = MAPE(pred, true)
+ mspe = MSPE(pred, true)
+
+ return mae, mse, rmse, mape, mspe
diff --git a/utils/print_args.py b/utils/print_args.py
new file mode 100644
index 0000000..b96d113
--- /dev/null
+++ b/utils/print_args.py
@@ -0,0 +1,59 @@
+def print_args(args):
+ print("\033[1m" + "Basic Config" + "\033[0m")
+ print(f' {"Task Name:":<20}{args.task_name:<20}{"Is Training:":<20}{args.is_training:<20}')
+ print(f' {"Model ID:":<20}{args.model_id:<20}{"Model:":<20}{args.model:<20}')
+ print()
+
+ print("\033[1m" + "Data Loader" + "\033[0m")
+ print(f' {"Data:":<20}{args.data:<20}{"Root Path:":<20}{args.root_path:<20}')
+ print(f' {"Data Path:":<20}{args.data_path:<20}{"Features:":<20}{args.features:<20}')
+ print(f' {"Target:":<20}{args.target:<20}{"Freq:":<20}{args.freq:<20}')
+ print(f' {"Checkpoints:":<20}{args.checkpoints:<20}')
+ print()
+
+ if args.task_name in ['long_term_forecast', 'short_term_forecast']:
+ print("\033[1m" + "Forecasting Task" + "\033[0m")
+ print(f' {"Seq Len:":<20}{args.seq_len:<20}{"Label Len:":<20}{args.label_len:<20}')
+ print(f' {"Pred Len:":<20}{args.pred_len:<20}{"Seasonal Patterns:":<20}{args.seasonal_patterns:<20}')
+ print(f' {"Inverse:":<20}{args.inverse:<20}')
+ print()
+
+ if args.task_name == 'imputation':
+ print("\033[1m" + "Imputation Task" + "\033[0m")
+ print(f' {"Mask Rate:":<20}{args.mask_rate:<20}')
+ print()
+
+ if args.task_name == 'anomaly_detection':
+ print("\033[1m" + "Anomaly Detection Task" + "\033[0m")
+ print(f' {"Anomaly Ratio:":<20}{args.anomaly_ratio:<20}')
+ print()
+
+ print("\033[1m" + "Model Parameters" + "\033[0m")
+ print(f' {"Top k:":<20}{args.top_k:<20}{"Num Kernels:":<20}{args.num_kernels:<20}')
+ print(f' {"Enc In:":<20}{args.enc_in:<20}{"Dec In:":<20}{args.dec_in:<20}')
+ print(f' {"C Out:":<20}{args.c_out:<20}{"d model:":<20}{args.d_model:<20}')
+ print(f' {"n heads:":<20}{args.n_heads:<20}{"e layers:":<20}{args.e_layers:<20}')
+ print(f' {"d layers:":<20}{args.d_layers:<20}{"d FF:":<20}{args.d_ff:<20}')
+ print(f' {"Moving Avg:":<20}{args.moving_avg:<20}{"Factor:":<20}{args.factor:<20}')
+ print(f' {"Distil:":<20}{args.distil:<20}{"Dropout:":<20}{args.dropout:<20}')
+ print(f' {"Embed:":<20}{args.embed:<20}{"Activation:":<20}{args.activation:<20}')
+ print(f' {"Output Attention:":<20}{args.output_attention:<20}')
+ print()
+
+ print("\033[1m" + "Run Parameters" + "\033[0m")
+ print(f' {"Num Workers:":<20}{args.num_workers:<20}{"Itr:":<20}{args.itr:<20}')
+ print(f' {"Train Epochs:":<20}{args.train_epochs:<20}{"Batch Size:":<20}{args.batch_size:<20}')
+ print(f' {"Patience:":<20}{args.patience:<20}{"Learning Rate:":<20}{args.learning_rate:<20}')
+ print(f' {"Des:":<20}{args.des:<20}{"Loss:":<20}{args.loss:<20}')
+ print(f' {"Lradj:":<20}{args.lradj:<20}{"Use Amp:":<20}{args.use_amp:<20}')
+ print()
+
+ print("\033[1m" + "GPU" + "\033[0m")
+ print(f' {"Use GPU:":<20}{args.use_gpu:<20}{"GPU:":<20}{args.gpu:<20}')
+ print(f' {"Use Multi GPU:":<20}{args.use_multi_gpu:<20}{"Devices:":<20}{args.devices:<20}')
+ print()
+
+ print("\033[1m" + "De-stationary Projector Params" + "\033[0m")
+ p_hidden_dims_str = ', '.join(map(str, args.p_hidden_dims))
+ print(f' {"P Hidden Dims:":<20}{p_hidden_dims_str:<20}{"P Hidden Layers:":<20}{args.p_hidden_layers:<20}')
+ print()
diff --git a/utils/timefeatures.py b/utils/timefeatures.py
new file mode 100644
index 0000000..7c12972
--- /dev/null
+++ b/utils/timefeatures.py
@@ -0,0 +1,148 @@
+# From: gluonts/src/gluonts/time_feature/_base.py
+# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License").
+# You may not use this file except in compliance with the License.
+# A copy of the License is located at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# or in the "license" file accompanying this file. This file is distributed
+# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
+# express or implied. See the License for the specific language governing
+# permissions and limitations under the License.
+
+from typing import List
+
+import numpy as np
+import pandas as pd
+from pandas.tseries import offsets
+from pandas.tseries.frequencies import to_offset
+
+
+class TimeFeature:
+ def __init__(self):
+ pass
+
+ def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
+ pass
+
+ def __repr__(self):
+ return self.__class__.__name__ + "()"
+
+
+class SecondOfMinute(TimeFeature):
+ """Minute of hour encoded as value between [-0.5, 0.5]"""
+
+ def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
+ return index.second / 59.0 - 0.5
+
+
+class MinuteOfHour(TimeFeature):
+ """Minute of hour encoded as value between [-0.5, 0.5]"""
+
+ def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
+ return index.minute / 59.0 - 0.5
+
+
+class HourOfDay(TimeFeature):
+ """Hour of day encoded as value between [-0.5, 0.5]"""
+
+ def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
+ return index.hour / 23.0 - 0.5
+
+
+class DayOfWeek(TimeFeature):
+ """Hour of day encoded as value between [-0.5, 0.5]"""
+
+ def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
+ return index.dayofweek / 6.0 - 0.5
+
+
+class DayOfMonth(TimeFeature):
+ """Day of month encoded as value between [-0.5, 0.5]"""
+
+ def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
+ return (index.day - 1) / 30.0 - 0.5
+
+
+class DayOfYear(TimeFeature):
+ """Day of year encoded as value between [-0.5, 0.5]"""
+
+ def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
+ return (index.dayofyear - 1) / 365.0 - 0.5
+
+
+class MonthOfYear(TimeFeature):
+ """Month of year encoded as value between [-0.5, 0.5]"""
+
+ def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
+ return (index.month - 1) / 11.0 - 0.5
+
+
+class WeekOfYear(TimeFeature):
+ """Week of year encoded as value between [-0.5, 0.5]"""
+
+ def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
+ return (index.isocalendar().week - 1) / 52.0 - 0.5
+
+
+def time_features_from_frequency_str(freq_str: str) -> List[TimeFeature]:
+ """
+ Returns a list of time features that will be appropriate for the given frequency string.
+ Parameters
+ ----------
+ freq_str
+ Frequency string of the form [multiple][granularity] such as "12H", "5min", "1D" etc.
+ """
+
+ features_by_offsets = {
+ offsets.YearEnd: [],
+ offsets.QuarterEnd: [MonthOfYear],
+ offsets.MonthEnd: [MonthOfYear],
+ offsets.Week: [DayOfMonth, WeekOfYear],
+ offsets.Day: [DayOfWeek, DayOfMonth, DayOfYear],
+ offsets.BusinessDay: [DayOfWeek, DayOfMonth, DayOfYear],
+ offsets.Hour: [HourOfDay, DayOfWeek, DayOfMonth, DayOfYear],
+ offsets.Minute: [
+ MinuteOfHour,
+ HourOfDay,
+ DayOfWeek,
+ DayOfMonth,
+ DayOfYear,
+ ],
+ offsets.Second: [
+ SecondOfMinute,
+ MinuteOfHour,
+ HourOfDay,
+ DayOfWeek,
+ DayOfMonth,
+ DayOfYear,
+ ],
+ }
+
+ offset = to_offset(freq_str)
+
+ for offset_type, feature_classes in features_by_offsets.items():
+ if isinstance(offset, offset_type):
+ return [cls() for cls in feature_classes]
+
+ supported_freq_msg = f"""
+ Unsupported frequency {freq_str}
+ The following frequencies are supported:
+ Y - yearly
+ alias: A
+ M - monthly
+ W - weekly
+ D - daily
+ B - business days
+ H - hourly
+ T - minutely
+ alias: min
+ S - secondly
+ """
+ raise RuntimeError(supported_freq_msg)
+
+
+def time_features(dates, freq='h'):
+ return np.vstack([feat(dates) for feat in time_features_from_frequency_str(freq)])
diff --git a/utils/tools.py b/utils/tools.py
new file mode 100644
index 0000000..08fb91b
--- /dev/null
+++ b/utils/tools.py
@@ -0,0 +1,118 @@
+import os
+
+import numpy as np
+import torch
+import matplotlib.pyplot as plt
+import pandas as pd
+import math
+
+plt.switch_backend('agg')
+
+
+def adjust_learning_rate(optimizer, epoch, args):
+ # lr = args.learning_rate * (0.2 ** (epoch // 2))
+ if args.lradj == 'type1':
+ lr_adjust = {epoch: args.learning_rate * (0.5 ** ((epoch - 1) // 1))}
+ elif args.lradj == 'type2':
+ lr_adjust = {
+ 2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6,
+ 10: 5e-7, 15: 1e-7, 20: 5e-8
+ }
+ elif args.lradj == "cosine":
+ lr_adjust = {epoch: args.learning_rate /2 * (1 + math.cos(epoch / args.train_epochs * math.pi))}
+ if epoch in lr_adjust.keys():
+ lr = lr_adjust[epoch]
+ for param_group in optimizer.param_groups:
+ param_group['lr'] = lr
+ print('Updating learning rate to {}'.format(lr))
+
+
+class EarlyStopping:
+ def __init__(self, patience=7, verbose=False, delta=0):
+ self.patience = patience
+ self.verbose = verbose
+ self.counter = 0
+ self.best_score = None
+ self.early_stop = False
+ self.val_loss_min = np.Inf
+ self.delta = delta
+
+ def __call__(self, val_loss, model, path):
+ score = -val_loss
+ if self.best_score is None:
+ self.best_score = score
+ self.save_checkpoint(val_loss, model, path)
+ elif score < self.best_score + self.delta:
+ self.counter += 1
+ print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
+ if self.counter >= self.patience:
+ self.early_stop = True
+ else:
+ self.best_score = score
+ self.save_checkpoint(val_loss, model, path)
+ self.counter = 0
+
+ def save_checkpoint(self, val_loss, model, path):
+ if self.verbose:
+ print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
+ torch.save(model.state_dict(), path + '/' + 'checkpoint.pth')
+ self.val_loss_min = val_loss
+
+
+class dotdict(dict):
+ """dot.notation access to dictionary attributes"""
+ __getattr__ = dict.get
+ __setattr__ = dict.__setitem__
+ __delattr__ = dict.__delitem__
+
+
+class StandardScaler():
+ def __init__(self, mean, std):
+ self.mean = mean
+ self.std = std
+
+ def transform(self, data):
+ return (data - self.mean) / self.std
+
+ def inverse_transform(self, data):
+ return (data * self.std) + self.mean
+
+
+def visual(true, preds=None, name='./pic/test.pdf'):
+ """
+ Results visualization
+ """
+ plt.figure()
+ plt.plot(true, label='GroundTruth', linewidth=2)
+ if preds is not None:
+ plt.plot(preds, label='Prediction', linewidth=2)
+ plt.legend()
+ plt.savefig(name, bbox_inches='tight')
+
+
+def adjustment(gt, pred):
+ anomaly_state = False
+ for i in range(len(gt)):
+ if gt[i] == 1 and pred[i] == 1 and not anomaly_state:
+ anomaly_state = True
+ for j in range(i, 0, -1):
+ if gt[j] == 0:
+ break
+ else:
+ if pred[j] == 0:
+ pred[j] = 1
+ for j in range(i, len(gt)):
+ if gt[j] == 0:
+ break
+ else:
+ if pred[j] == 0:
+ pred[j] = 1
+ elif gt[i] == 0:
+ anomaly_state = False
+ if anomaly_state:
+ pred[i] = 1
+ return gt, pred
+
+
+def cal_accuracy(y_pred, y_true):
+ return np.mean(y_pred == y_true)
\ No newline at end of file