Skip to content

An open-source implementaion for fine-tuning Qwen2-VL series by Alibaba Cloud.

License

Notifications You must be signed in to change notification settings

2U1/Qwen2-VL-Finetune

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fine-tuning Qwen2-VL

This repository contains a script for training Qwen2-VL with only using HuggingFace and Liger-Kernel.

Other projects

[Phi3-Vision Finetuning]
[Llama3.2-Vision Finetuning]
[Molmo Finetune]
[Pixtral Finetune]
[SmolVLM Finetune]

Update

  • [2025/01/24] Add option for using DoRA.
  • [2025/01/24] Fix error in LoRA training.
  • [2025/01/18] đŸ”„Supports mixed-modality data.
  • [2025/01/11] Updated 8-bit training with ms_amp fp8 with opt_level O3.
  • [2024/11/05] Add memory efficient 8-bit training.
  • [2024/09/12] đŸ”„Now the model is trained using Liger-Kernel.
  • [2024/09/11] Supports setting different learning rates to projector and vision model.
  • [2024/09/11] đŸ”„Supports multi-image and video training.

Table of Contents

Supported Features

  • Deepspeed
  • LoRA/QLoRA
  • Full-finetuning
  • Enable finetuning vision_model while using LoRA.
  • Disable/enable Flash Attention 2
  • Multi-image and video training
  • Training optimized with liger kernel

Installation

Install the required packages using environment.yaml.

Using environment.yaml

conda env create -f environment.yaml
conda activate qwen2
pip install qwen-vl-utils
pip install flash-attn==2.5.8 --no-build-isolation

Note: You should install flash-attn after installing the other packages.

Dataset Preparation

The script requires a dataset formatted according to the LLaVA specification. The dataset should be a JSON file where each entry contains information about conversations and images. Ensure that the image paths in the dataset match the provided --image_folder.

When using a multi-image dataset, the image tokens should all be <image>, and the image file names should have been in a list.

Please see the example below and follow format your data.

Example for single image dataset
[
  {
    "id": "000000033471",
    "image": "000000033471.jpg",
    "conversations": [
      {
        "from": "human",
        "value": "<image>\nWhat are the colors of the bus in the image?"
      },
      {
        "from": "gpt",
        "value": "The bus in the image is white and red."
      },
      {
        "from": "human",
        "value": "What feature can be seen on the back of the bus?"
      },
      {
        "from": "gpt",
        "value": "The back of the bus features an advertisement."
      },
      {
        "from": "human",
        "value": "Is the bus driving down the street or pulled off to the side?"
      },
      {
        "from": "gpt",
        "value": "The bus is driving down the street, which is crowded with people and other vehicles."
      }
    ]
  }
  ...
]
Example for multi image dataset
[
  {
    "id": "000000033471",
    "image": ["000000033471.jpg", "000000033472.jpg"],
    "conversations": [
      {
        "from": "human",
        "value": "<image>\n<image>\nIs the perspective of the camera differnt?"
      },
      {
        "from": "gpt",
        "value": "Yes, It the perspective of the camera is different."
      }
    ]
  }
  ...
]
Example for video dataset
[
  {
    "id": "sample1",
    "video": "sample1.mp4",
    "conversations": [
      {
        "from": "human",
        "value": "<video>\nWhat is going on in this video?"
      },
      {
        "from": "gpt",
        "value": "A man is walking down the road."
      }
    ]
  }
  ...
]

Note: Qwen2-VL uses a video as a sequential of images.



Adding the new domain-specific data on top of the general data from open-source data will enhance downstream capabilities while retaining the foundational skills. Of course, you can also choose to fine-tune solely on the new data based on your requirements.

Training

To run the training script, use the following command:

Full Finetuning

bash scripts/finetune.sh

Full Finetuning with 8-bit

bash scripts/finetune_8bit.sh

You need to install ms-amp to use this script.
This script will finetune the model with fp8 model dtype. If you run out of vram, you could use this.
You can even use offloading with fp8 training. For detailed config, you could change the deepspeed config files.

Finetune with LoRA

If you want to train only the language model with LoRA and perform full training for the vision model:

bash scripts/finetune_lora.sh

If you want to train both the language model and the vision model with LoRA:

bash scripts/finetune_lora_vision.sh

IMPORTANT: If you want to tune the embed_token with LoRA, You need to tune lm_head together.

Training arguments
  • --deepspeed (str): Path to DeepSpeed config file (default: "scripts/zero2.json").
  • --data_path (str): Path to the LLaVA formatted training data (a JSON file). (Required)
  • --image_folder (str): Path to the images folder as referenced in the LLaVA formatted training data. (Required)
  • --model_id (str): Path to the Qwen2-VL model. (Required)
  • --output_dir (str): Output directory for model checkpoints
  • --num_train_epochs (int): Number of training epochs (default: 1).
  • --per_device_train_batch_size (int): Training batch size per GPU per forwarding step.
  • --gradient_accumulation_steps (int): Gradient accumulation steps (default: 4).
  • --freeze_vision_tower (bool): Option to freeze vision_model (default: False).
  • --freeze_llm (bool): Option to freeze LLM (default: False).
  • --tune_merger (bool): Option to tune projector (default: True).
  • --num_lora_modules (int): Number of target modules to add LoRA (-1 means all layers).
  • --vision_lr (float): Learning rate for vision_model.
  • --merger_lr (float): Learning rate for merger(projector).
  • --learning_rate (float): Learning rate for language module.
  • --bf16 (bool): Option for using bfloat16.
  • --fp16 (bool): Option for using fp16.
  • --min_pixels (int): Option for minimum input tokens.
  • --max_pixles (int): Option for maximum maxmimum tokens.
  • --lora_enable (bool): Option for using LoRA.
  • --vision_lora (bool): Option for including vision_tower in LoRA module. lora_enable should be True to use this option.
  • --use_dora (bool): Option for using DoRA instead of LoRA. lora_enable should be True to use this option.
  • --lora_namespan_exclude (str): Exclude modules with namespans to add LoRA.
  • --max_seq_length (int): Maximum sequence length (default: 32K).
  • --bits (int): Quantization bits (default: 16).
  • --disable_flash_attn2 (bool): Disable Flash Attention 2.
  • --report_to (str): Reporting tool (choices: 'tensorboard', 'wandb', 'none') (default: 'tensorboard').
  • --logging_dir (str): Logging directory (default: "./tf-logs").
  • --lora_rank (int): LoRA rank (default: 128).
  • --lora_alpha (int): LoRA alpha (default: 256).
  • --lora_dropout (float): LoRA dropout (default: 0.05).
  • --logging_steps (int): Logging steps (default: 1).
  • --dataloader_num_workers (int): Number of data loader workers (default: 4).

Note: The learning rate of vision_model should be 10x ~ 5x smaller than the language_model.

Train with video dataset

You can train the model using a video dataset. However, Qwen2-VL processes videos as a sequence of images, so you’ll need to select specific frames and treat them as multiple images for training. You can set LoRA configs and use for LoRA too.

bash scripts/finetune_video.sh

Note: When training with video, it just as multi-image so you should adjust the max_pixels for maximum resolution and fps based on the available VRAM.

If you run out of vram, you can use zero3_offload instead of zero3. However, using zero3 is preferred.

Merge LoRA Weights

bash scripts/merge_lora.sh

Note: Remember to replace the paths in finetune.sh or finetune_lora.sh with your specific paths. (Also in merge_lora.sh when using LoRA.)

Image Resolution for performance boost

The model supprots a wide range of resolution inputs. By default, it uses the native resolution for input. For better performance using native or higer pixel numbers are recommended, however it takes too much memory and computation time for large images. So you could adjust the pixel numbers for it. The model splits the image into token * 28 * 28 so you could just change the the token_num part in the script.
For example:

min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28

Note: For video, the you don't have to set like this, you could just set the maximum resolution for it.

Issue for libcudnn error

Could not load library libcudnn_cnn_train.so.8. Error: /usr/local/cuda-12.1/lib/libcudnn_cnn_train.so.8: undefined symbol: _ZN5cudnn3cnn34layerNormFwd_execute_internal_implERKNS_7backend11VariantPackEP11CUstream_stRNS0_18LayerNormFwdParamsERKNS1_20NormForwardOperationEmb, version libcudnn_cnn_infer.so.8

You could run unset LD_LIBRARY_PATH for this error. You could see this issue

Inference

Note: You should use the merged weight when trained with LoRA.

Gradio Infernce (WebUI)

  1. Install gradio
pip install gradio
  1. Launch app
python -m src.serve.app \
    --model-path /path/to/merged/weight

You can launch gradio based demo with this command. This can also set some other generation configs like repetition_penalty, temperature etc.

TODO

  • Support for video data
  • Add demo for multi-image and video
  • Handle mixed-modality data in dataset and collator

Known Issues

License

This project is licensed under the Apache-2.0 License. See the LICENSE file for details.

Citation

If you find this repository useful in your project, please consider giving a ⭐ and citing:

@misc{Qwen2-VL-Finetuning,
  author = {Yuwon Lee},
  title = {Qwen2-VL-Finetune},
  year = {2024},
  publisher = {GitHub},
  url = {https://github.com/2U1/Qwen2-VL-Finetune}
}

Acknowledgement

This project is based on

  • LLaVA-NeXT: An amazing open-source project of LMM.
  • Mipha: Open-source projcet of SMM with amazing capabilites.
  • Qwen2-VL-7B-Instruct: Awesome pretrained MLLM based on Qwen2.
  • Liger-Kernel: Collection of Tirton kernels designed specifically for LLM training.

About

An open-source implementaion for fine-tuning Qwen2-VL series by Alibaba Cloud.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published