Skip to content

4uiiurz1/pytorch-auto-augment

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyTorch implementation of AutoAugment

This repository contains code for AutoAugment (only using paper's best policies) based on AutoAugment: Learning Augmentation Policies from Data implemented in PyTorch.

example

Requirements

  • Python 3.6
  • PyTorch 1.0

Training

CIFAR-10

WideResNet28-10 baseline on CIFAR-10:

python train.py

WideResNet28-10 +Cutout, AutoAugment on CIFAR-10:

python train.py --cutout True --auto-augment True

Results

CIFAR-10

Model Error rate Loss Error rate (paper)
WideResNet28-10 baseline 3.82 0.1576 3.87
WideResNet28-10 +Cutout 3.40 0.1280 3.08
WideResNet28-10 +Cutout, AutoAugment 2.91 0.0994 2.68

Learning curves of loss and accuracy.

loss

acc

Releases

No releases published

Packages

No packages published

Languages