UpshotLlama-3-8B

This is an ORPO fine-tune of meta-llama/Meta-Llama-3-8B on 2k sample of dpo_math_data from mlabonne/orpo-dpo-mix-40k.

It's a successful fine-tune that follows the ChatML template!

πŸ”Ž Application

This model uses a context window of 8k. It was trained with the ChatML template.

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Aditya685/UpshotLlama-3-8B"
messages = [{"role": "user", "content": "Given the equation 4x + 7 = 55. Find the value of x"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
9
Safetensors
Model size
8.03B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Aditya685/UpshotLlama-3-8B