Transformer En-PT (Teeny-Tiny Castle)

This model is part of a tutorial tied to the Teeny-Tiny Castle, an open-source repository containing educational tools for AI Ethics and Safety research.

How to Use

import tensorflow as tf
import numpy as np
import string
import keras
import re

strip_chars = string.punctuation
strip_chars = strip_chars.replace("[", "")
strip_chars = strip_chars.replace("]", "")


def custom_standardization(input_string):
    lowercase = tf.strings.lower(input_string)
    return tf.strings.regex_replace(lowercase, f"[{re.escape(strip_chars)}]", "")

portuguese_vocabulary_path = hf_hub_download(
    repo_id="AiresPucrs/transformer-eng-por",
    filename="keras_transformer_blocks.py",
    repo_type='model',
    local_dir="./")

from keras_transformer_blocks import TransformerEncoder, PositionalEmbedding, TransformerDecoder

transformer = keras.models.load_model("./transformer-eng-por/transformer-eng-por.h5",
    custom_objects={"TransformerEncoder": TransformerEncoder,
        "PositionalEmbedding": PositionalEmbedding,
        "TransformerDecoder": TransformerDecoder})

with open('portuguese_vocabulary.txt', encoding='utf-8', errors='backslashreplace') as fp:
    portuguese_vocab = [line.strip() for line in fp]
    fp.close()

with open('english_vocabulary.txt', encoding='utf-8', errors='backslashreplace') as fp:
    english_vocab = [line.strip() for line in fp]
    fp.close()


target_vectorization = tf.keras.layers.TextVectorization(max_tokens=20000,
                                        output_mode="int",
                                        output_sequence_length=21,
                                        standardize=custom_standardization,
                                        vocabulary=portuguese_vocab)

source_vectorization = tf.keras.layers.TextVectorization(max_tokens=20000,
                                        output_mode="int",
                                        output_sequence_length=20,
                                        vocabulary=english_vocab)

portuguese_index_lookup = dict(zip(range(len(portuguese_vocab)), portuguese_vocab))
max_decoded_sentence_length = 20


def decode_sequence(input_sentence):
    tokenized_input_sentence = source_vectorization([input_sentence])
    decoded_sentence = "[start]"

    for i in range(max_decoded_sentence_length):
        tokenized_target_sentence = target_vectorization([decoded_sentence])[:, :-1]
        predictions = transformer([tokenized_input_sentence, tokenized_target_sentence])
        sampled_token_index = np.argmax(predictions[0, i, :])
        sampled_token = portuguese_index_lookup[sampled_token_index]
        decoded_sentence += " " + sampled_token
        if sampled_token == "[end]":
            break
    return decoded_sentence


eng_sentences =["What is its name?",
                "How old are you?",
                "I know you know where Mary is.",
                "We will show Tom.",
                "What do you all do?",
                "Don't do it!"]

for sentence in eng_sentences:
    print(f"English sentence:\n{sentence}")
    print(f'Portuguese translation:\n{decode_sequence(sentence)}')
    print('-' * 50)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.