Skip to content

AmbassadorOv/AI231.meta.io

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 

Repository files navigation

AI231.meta.io

Artificial Abstraction :

html_content = """
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Composite Neural Architecture</title>
    <style>
        body {
            font-family: Arial, sans-serif;
            line-height: 1.6;
            background-color: #f4f4f9;
            margin: 0;
            padding: 0;
        }
        header {
            background: #333;
            color: #fff;
            padding: 10px 0;
            text-align: center;
        }
        section {
            margin: 20px;
            padding: 20px;
            background: #fff;
            border-radius: 8px;
            box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
        }
        h1, h2, h3 {
            color: #333;
        }
        .code-block {
            background: #272822;
            color: #f8f8f2;
            padding: 10px;
            border-radius: 5px;
            overflow-x: auto;
        }
        .dot-cloud {
            display: flex;
            flex-wrap: wrap;
            justify-content: center;
            gap: 10px;
            margin-top: 20px;
        }
        .dot {
            width: 10px;
            height: 10px;
            border-radius: 50%;
            background: #0077ff;
        }
    </style>
</head>
<body>
    <header>
        <h1>Composite Neural Architecture: Hybrid Dot Cloud</h1>
    </header>
    <section>
        <h2>1. Introduction</h2>
        <p>This framework integrates diverse sensory and cognitive processes, such as vision, hearing, speech, and calculation, into a unified neural network structure called the <strong>Neural Iterative Architecture (NIA)</strong>.</p>
    </section>
    <section>
        <h2>2. Key Components</h2>
        <h3>2.1 Neural Iterative Architecture (NIA)</h3>
        <p>A multi-layered architecture with iterative refinement and feedback loops, ensuring dynamic adaptability.</p>
        <h3>2.2 Neuralion</h3>
        <p>An interlinked network combining specialized sub-networks for each modality. Connections are mediated through hyperpoints for cross-sensory integration.</p>
        <h3>2.3 Hyperpoints</h3>
        <p>Central nodes representing shared states in a multidimensional semantic space.</p>
    </section>
    <section>
        <h2>3. Workflow</h2>
        <ol>
            <li>Data streams enter specialized sub-networks for processing.</li>
            <li>Feature vectors are transformed into hyperpoints in a composite dot cloud.</li>
            <li>Hyperpoints are iteratively refined through feedback loops.</li>
            <li>Refined states are broadcast globally for decision-making.</li>
        </ol>
    </section>
    <section>
        <h2>4. Visualization</h2>
        <div class="dot-cloud">
            <div class="dot" style="background: #ff0000;"></div>
            <div class="dot" style="background: #00ff00;"></div>
            <div class="dot" style="background: #0000ff;"></div>
            <div class="dot" style="background: #ff00ff;"></div>
            <div class="dot" style="background: #00ffff;"></div>
            <div class="dot" style="background: #ffff00;"></div>
        </div>
        <p>Each dot represents a hyperpoint, with colors indicating modality (e.g., red for vision, green for hearing).</p>
    </section>
    <section>
        <h2>5. Applications</h2>
        <ul>
            <li><strong>Autonomous Systems:</strong> Robots capable of real-time decision-making based on multimodal input.</li>
            <li><strong>Creative AI:</strong> Generating novel art and music by combining sensory and cognitive data.</li>
            <li><strong>Healthcare:</strong> Integrative diagnostic tools blending patient history, imaging, and real-time monitoring.</li>
        </ul>
    </section>
    <footer>
        <p style="text-align:center;">&copy; 2025 Composite Neural Architecture Framework</p>
    </footer>
</body>
</html>
"""

with open('composite_neural_architecture.html', 'w') as file:
    file.write(html_content)

print("HTML content has been written to 'composite_neural_architecture.html'")

This script will generate the provided HTML content and save it to a file named composite_neural_architecture.html.

import numpy as np import matplotlib.pyplot as plt import networkx as nx

class Neuron: def init(self, a, b, c): self.a = a self.b = b self.c = c

def third_order_equation(self, V, dV, ddV, I):
    return ddV + self.a * dV + self.b * V + self.c - I

class CompositePointCloud: def init(self): self.points = []

def add_point(self, x, y, z, attributes):
    self.points.append((x, y, z, attributes))

def visualize(self):
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    xs, ys, zs = zip(*[(p[0], p[1], p[2]) for p in self.points])
    ax.scatter(xs, ys, zs)
    plt.show()

class RandomHybridTree: def init(self): self.tree = nx.DiGraph()

def add_node(self, node):
    self.tree.add_node(node)

def add_edge(self, node1, node2, weight):
    self.tree.add_edge(node1, node2, weight=weight)

def visualize(self):
    pos = nx.spring_layout(self.tree)
    nx.draw(self.tree, pos, with_labels=True, node_size=700, node_color='skyblue', font_size=10, font_weight='bold')
    labels = nx.get_edge_attributes(self.tree, 'weight')
    nx.draw_networkx_edge_labels(self.tree, pos, edge_labels=labels)
    plt.show()

Example Usage

Neuron dynamics using third-order differential equations

neuron = Neuron(a=1.0, b=0.5, c=-0.1) V, dV, ddV, I = 1.0, 0.5, 0.2, 0.8 neuron_output = neuron.third_order_equation(V, dV, ddV, I) print(f"Neuron output (third-order equation): {neuron_output}")

Creating and visualizing a composite point cloud

point_cloud = CompositePointCloud() point_cloud.add_point(0.1, 0.2, 0.3, {"firing_rate": 0.5}) point_cloud.add_point(0.4, 0.5, 0.6, {"firing_rate": 0.8}) point_cloud.visualize()

Creating and visualizing a random hybrid tree

hybrid_tree = RandomHybridTree() hybrid_tree.add_node("A") hybrid_tree.add_node("B") hybrid_tree.add_edge("A", "B", 0.6) hybrid_tree.visualize()

class CompositeNeuralArchitecture: def init(self): self.neurons = [] self.point_cloud = CompositePointCloud() self.hybrid_tree = RandomHybridTree()

def add_neuron(self, neuron):
    self.neurons.append(neuron)

def add_point_to_cloud(self, x, y, z, attributes):
    self.point_cloud.add_point(x, y, z, attributes)

def add_edge_to_tree(self, node1, node2, weight):
    self.hybrid_tree.add_edge(node1, node2, weight)

def visualize_architecture(self):
    print("Visualizing Composite Point Cloud...")
    self.point_cloud.visualize()
    print("Visualizing Random Hybrid Tree...")
    self.hybrid_tree.visualize()

Example Usage

architecture = CompositeNeuralArchitecture() architecture.add_neuron(neuron) architecture.add_point_to_cloud(0.7, 0.8, 0.9, {"firing_rate": 0.9}) architecture.add_edge_to_tree("B", "C", 0.7) architecture.visualize_architecture() class CompositeNeuralArchitecture: def init(self): self.neurons = [] self.point_cloud = CompositePointCloud() self.hybrid_tree = RandomHybridTree()

def add_neuron(self, neuron):
    self.neurons.append(neuron)

def add_point_to_cloud(self, x, y, z, attributes):
    self.point_cloud.add_point(x, y, z, attributes)

def add_edge_to_tree(self, node1, node2, weight):
    self.hybrid_tree.add_edge(node1, node2, weight)

def visualize_architecture(self):
    print("Visualizing Composite Point Cloud...")
    self.point_cloud.visualize()
    print("Visualizing Random Hybrid Tree...")
    self.hybrid_tree.visualize()

Example of use

architecture = CompositeNeuralArchitecture() architecture.add_neuron(neuron) architecture.add_point_to_cloud(0.7, 0.8, 0.9, {"firing_rate": 0.9}) architecture.add_edge_to_tree("B", "C", 0.7) architecture.visualize_architecture()

import numpy as np import matplotlib.pyplot as plt import networkx as nx

class Neuron: def init(self, a, b, c): self.a = a self.b = b self.c = c

def third_order_equation(self, V, dV, ddV, I):
    return ddV + self.a * dV + self.b * V + self.c - I

class CompositePointCloud: def init(self): self.points = []

def add_point(self, x, y, z, attributes):
    self.points.append((x, y, z, attributes))

def visualize(self):
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    xs, ys, zs = zip(*[(p[0], p[1], p[2]) for p in self.points])
    ax.scatter(xs, ys, zs)
    plt.show()

class RandomHybridTree: def init(self): self.tree = nx.DiGraph()

def add_node(self, node):
    self.tree.add_node(node)

def add_edge(self, node1, node2, weight):
    self.tree.add_edge(node1, node2, weight=weight)

def visualize(self):
    pos = nx.spring_layout(self.tree)
    nx.draw(self.tree, pos, with_labels=True, node_size=700, node_color='skyblue', font_size=10, font_weight='bold')
    labels = nx.get_edge_attributes(self.tree, 'weight')
    nx.draw_networkx_edge_labels(self.tree, pos, edge_labels=labels)
    plt.show()

Example of use

Neurodynamics using third-order differential equations

neuron = Neuron(a=1.0, b=0.5, c=-0.1) V, dV, ddV, I = 1.0, 0.5, 0.2, 0.8 neuron_output = neuron.third_order_equation(V, dV, ddV, I) print(f"Neuron output (third-order equation): {neuron_output}")

Create and visualize a complex point cloud

point_cloud = CompositePointCloud() point_cloud.add_point(0.1, 0.2, 0.3, {"firing_rate": 0.5}) point_cloud.add_point(0.4, 0.5, 0.6, {"firing_rate": 0.8}) point_cloud.visualize()

Creating and Illustrating a Random Hybrid Tree

hybrid_tree = RandomHybridTree() hybrid_tree.add_node("A") hybrid_tree.add_node("B") hybrid_tree.add_edge("A", "B", 0.6) hybrid_tree.visualize() html_content = """

<title>Composite Neural Architecture</title> <style> body { font-family: Arial, sans-serif; line-height: 1.6; background-color: #f4f4f9; margin: 0; padding: 0; } header { background: #333; color: #fff; padding: 10px 0; text-align: center; } section { margin: 20px; padding: 20px; background: #fff; border-radius: 8px; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); } h1, h2, h3 { color: #333; } .code-block { background: #272822; color: #f8f8f2; padding: 10px; border-radius: 5px; overflow-x: auto; } .dot-cloud { display: flex; flex-wrap: wrap; justify-content: center; gap: 10px; margin-top: 20px; } .dot { width: 10px; height: 10px; border-radius: 50%; background: #0077ff; } </style>

Composite Neural Architecture: Hybrid Dot Cloud

1. Introduction

This framework integrates diverse sensory and cognitive processes, such as vision, hearing, speech, and calculation, into a unified neural network structure called the Neural Iterative Architecture (NIA).

2. Key Components

2.1 Neural Iterative Architecture (NIA)

A multi-layered architecture with iterative refinement and feedback loops, ensuring dynamic adaptability.

2.2 Neuralion

An interlinked network combining specialized sub-networks for each modality. Connections are mediated through hyperpoints for cross-sensory integration.

2.3 Hyperpoints

Central nodes representing shared states in a multidimensional semantic space.

3. Workflow

  1. Data streams enter specialized sub-networks for processing.
  2. Feature vectors are transformed into hyperpoints in a composite dot cloud.
  3. Hyperpoints are iteratively refined through feedback loops.
  4. Refined states are broadcast globally for decision-making.

4. Visualization

Each dot represents a hyperpoint, with colors indicating modality (e.g., red for vision, green for hearing).

5. Applications

  • Autonomous Systems: Robots capable of real-time decision-making based on multimodal input.
  • Creative AI: Generating novel art and music by combining sensory and cognitive data.
  • Healthcare: Integrative diagnostic tools blending patient history, imaging, and real-time monitoring.

© 2025 Composite Neural Architecture Framework

"""

with open('composite_neural_architecture.html', 'w') as file: file.write(html_content)

print("HTML content has been written to 'composite_neural_architecture.html'")

About

Artificial Abstraction

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published