Skip to content

A lightweight, JSON file-based ODM Database for Node.js, inspired by Mongoose

License

Notifications You must be signed in to change notification settings

AnasQiblawi/localgoose

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Localgoose

A lightweight, file-based ODM (Object-Document Mapper) for Node.js, inspired by Mongoose but designed for local JSON storage. Perfect for prototypes, small applications, and scenarios where a full MongoDB setup isn't needed.

Features

  • 🚀 Mongoose-like API for familiar development experience
  • 📁 JSON file-based storage
  • 🔄 Schema validation and type casting
  • 🎯 Rich query API with chainable methods
  • 📊 Aggregation pipeline support
  • 🔌 Virtual properties and middleware hooks
  • 🏃‍♂️ Zero external dependencies (except BSON for ObjectIds)
  • 🔗 Support for related models and references
  • 📝 Comprehensive CRUD operations
  • 🔍 Advanced querying and filtering
  • 🔎 Full-text search capabilities
  • 📑 Compound indexing support
  • 🔄 Schema inheritance and discrimination
  • 🎨 Custom type casting and validation
  • 🗄️ Backup and restore functionality
  • 🧩 Custom types and schema inheritance
  • 🛠️ Middleware hooks for documents, queries, and aggregations
  • 🌐 Geospatial queries and indexing
  • 📅 Date operators and bitwise operators

Installation

npm install localgoose

Quick Start

const { localgoose } = require('localgoose');

// Connect to a local directory for storage
const db = localgoose.connect('./mydb');

// Define schemas for related models
const userSchema = new localgoose.Schema({
  username: { type: String, required: true },
  email: { type: String, required: true },
  age: { type: Number, required: true },
  tags: { type: Array, default: [] }
});

const postSchema = new localgoose.Schema({
  title: { type: String, required: true },
  content: { type: String, required: true },
  author: { type: localgoose.Schema.Types.ObjectId, ref: 'User' },
  likes: { type: Number, default: 0 }
});

// Create models
const User = db.model('User', userSchema);
const Post = db.model('Post', postSchema);

// Create a user
const user = await User.create({
  username: 'john',
  email: '[email protected]',
  age: 25,
  tags: ['developer']
});

// Create a post with reference to user
const post = await Post.create({
  title: 'Getting Started',
  content: 'Hello World!',
  author: user._id
});

// Query with population
const posts = await Post.find()
  .populate('author')
  .sort('-likes')
  .exec();

// Use aggregation pipeline
const stats = await Post.aggregate()
  .match({ author: user._id })
  .group({
    _id: null,
    totalPosts: { $sum: 1 },
    avgLikes: { $avg: '$likes' }
  })
  .exec();

API Reference

Connection

// Connect to database
const db = await localgoose.connect('./mydb');

// Create separate connection
const connection = await localgoose.createConnection('./mydb');

Schema Definition

const schema = new localgoose.Schema({
  // Basic types
  string: { type: String, required: true },
  number: { type: Number, default: 0 },
  boolean: { type: Boolean },
  date: { type: Date, default: Date.now },
  objectId: { type: localgoose.Schema.Types.ObjectId, ref: 'OtherModel' },
  buffer: localgoose.Schema.Types.Buffer,
  uuid: localgoose.Schema.Types.UUID,
  bigInt: localgoose.Schema.Types.BigInt,
  mixed: localgoose.Schema.Types.Mixed,
  map: localgoose.Schema.Types.Map,
  
  // Arrays and Objects
  array: { type: Array, default: [] },
  object: {
    type: Object,
    default: {
      key: 'value'
    }
  }
});

// Virtual properties
schema.virtual('fullName').get(function() {
  return `${this.firstName} ${this.lastName}`;
});

// Instance methods
schema.method('getInfo', function() {
  return `${this.username} (${this.age})`;
});

// Static methods
schema.static('findByEmail', function(email) {
  return this.findOne({ email });
});

// Middleware
schema.pre('save', function() {
  this.updatedAt = new Date();
});

schema.post('save', function() {
  console.log('Document saved:', this._id);
});

// Indexes
schema.index({ email: 1 }, { unique: true });
schema.index({ title: 'text', content: 'text' });

Model Operations

Create

// Create a single document
const doc = await Model.create({
  field: 'value'
});

// Create multiple documents
const docs = await Model.create([
  { field: 'value1' },
  { field: 'value2' }
]);

// Insert many documents
const docs = await Model.insertMany([
  { field: 'value1' },
  { field: 'value2' }
], {
  ordered: true, // Optional: documents are inserted in order
  lean: true     // Optional: returns plain objects instead of documents
});

Read

// Find all documents
const docs = await Model.find();

// Find with specific conditions
const docs = await Model.find({
  field: 'value',
  number: { $gt: 10 }
});

// Find one document
const doc = await Model.findOne({
  field: 'value'
});

// Find by ID
const doc = await Model.findById(id);

// Count documents
const count = await Model.countDocuments({
  field: 'value'
});

// Estimated count (faster but not exact)
const count = await Model.estimatedDocumentCount();

// Check if document exists
const exists = await Model.exists({ field: 'value' });

// Get distinct values
const values = await Model.distinct('field', { type: 'specific' });

// Find with population
const doc = await Model.findOne({ field: 'value' })
  .populate('reference')
  .exec();

Update

// Update one document
const result = await Model.updateOne(
  { field: 'value' },            // filter
  { $set: { newField: 'new' }},  // update
  { upsert: true }               // options
);

// Update many documents
const result = await Model.updateMany(
  { field: 'value' },
  { $set: { newField: 'new' }}
);

// Find one and update
const doc = await Model.findOneAndUpdate(
  { field: 'value' },
  { $set: { newField: 'new' }},
  { 
    new: true,      // return updated document
    upsert: true    // create if not exists
  }
);

// Find by ID and update
const doc = await Model.findByIdAndUpdate(
  id,
  { $set: { field: 'new' }},
  { new: true }
);

// Replace one document
const result = await Model.replaceOne(
  { field: 'value' },
  { newDocument: true }
);

// Increment a field
const result = await Model.increment(
  { field: 'value' },  // filter
  'counter',           // field to increment
  5                    // increment amount (default: 1)
);

Delete

// Delete one document
const result = await Model.deleteOne({
  field: 'value'
});

// Delete many documents
const result = await Model.deleteMany({
  field: 'value'
});

// Find one and delete
const doc = await Model.findOneAndDelete({
  field: 'value'
});

// Find by ID and delete
const doc = await Model.findByIdAndDelete(id);

// Find by ID and remove (alias for findByIdAndDelete)
const doc = await Model.findByIdAndRemove(id);

Bulk Operations

// Bulk write operations
const result = await Model.bulkWrite([
  {
    insertOne: {
      document: { field: 'value' }
    }
  },
  {
    updateOne: {
      filter: { field: 'value' },
      update: { $set: { field: 'new' }}
    }
  },
  {
    deleteOne: {
      filter: { field: 'value' }
    }
  }
], {
  ordered: true // Optional: operations are executed in order
});

// Bulk save documents
const result = await Model.bulkSave([
  new Model({ field: 'value1' }),
  new Model({ field: 'value2' })
], {
  ordered: true
});

Query API

// Chainable query methods
const docs = await Model.find()
  .where('field').equals('value')
  .where('number').gt(10).lt(20)
  .where('tags').in(['tag1', 'tag2'])
  .select('field1 field2')
  .sort('-field')
  .skip(10)
  .limit(5)
  .populate('reference')
  .exec();

// Advanced queries with geospatial support
const docs = await Model.find()
  .where('location')
  .near({
    center: [longitude, latitude],
    maxDistance: 5000
  })
  .exec();

// Text search
const docs = await Model.find()
  .where('$text')
  .equals({ $search: 'keyword' })
  .exec();

Aggregation Pipeline

const results = await Model.aggregate()
  .match({ field: 'value' })
  .group({
    _id: '$groupField',
    total: { $sum: 1 },
    avg: { $avg: '$numField' }
  })
  .sort({ total: -1 })
  .limit(5)
  .exec();

Backup and Restore

// Create backup
const backupPath = await Model.backup();

// Restore from backup
await Model.restore(backupPath);

// List backups
const backups = await Model.listBackups();

// Clean up old backups
await Model.cleanupBackups();

Supported Update Operators

Field Update Operators

  • $set: Sets the value of a field
  • $unset: Removes the specified field from a document
  • $rename: Renames a field
  • $setOnInsert: Sets the value of a field if an update results in an insert

Increment/Decrement Operators

  • $inc: Increments the value of a field by the specified amount
  • $mul: Multiplies the value of a field by the specified amount
  • $min: Updates the field only if the specified value is less than the existing value
  • $max: Updates the field only if the specified value is greater than the existing value

Array Update Operators

  • $push: Adds an item to an array
  • $pull: Removes all array elements that match a specified query
  • $addToSet: Adds elements to an array only if they do not already exist
  • $pop: Removes the first or last item from an array
  • $pullAll: Removes all matching values from an array

Bitwise Operators

  • $bit: Performs bitwise AND, OR, and XOR updates of integer values

Date Operators

  • $currentDate: Sets the value of a field to the current date

Supported Query Operators

  • equals: Exact match
  • gt: Greater than
  • gte: Greater than or equal
  • lt: Less than
  • lte: Less than or equal
  • in: Match any value in array
  • nin: Not match any value in array
  • regex: Regular expression match
  • exists: Check for existence of a field
  • size: Match the size of an array
  • mod: Match documents where the value of a field modulo some divisor is equal to a specified remainder
  • near: Find documents near a specified point
  • maxDistance: Limit the results to documents within a specified distance from the point
  • within: Find documents within a specified shape
  • box: Find documents within a rectangular box
  • center: Find documents within a specified circle
  • centerSphere: Find documents within a specified spherical circle
  • polygon: Find documents within a specified polygon
  • geoIntersects: Find documents that intersect a specified geometry
  • nearSphere: Find documents near a specified point using spherical geometry
  • text: Full-text search
  • or: Logical OR
  • nor: Logical NOR
  • and: Logical AND
  • elemMatch: Match documents that contain an array field with at least one element that matches all the specified query criteria

Supported Aggregation Operators

  • $match: Filter documents
  • $group: Group documents by expression
  • $sort: Sort documents
  • $limit: Limit number of documents
  • $skip: Skip number of documents
  • $unwind: Deconstruct array field
  • $lookup: Perform left outer join
  • $project: Reshape documents
  • $addFields: Add new fields
  • $facet: Process multiple aggregation pipelines
  • $bucket: Categorize documents into buckets
  • $sortByCount: Group and count documents
  • $densify: Fill gaps in time-series data
  • $graphLookup: Perform recursive search on a collection
  • $unionWith: Combine documents from another collection
  • $count: Count the number of documents
  • $out: Write the result to a collection
  • $merge: Merge the result with a collection
  • $replaceRoot: Replace the input document with the specified document
  • $set: Add new fields or update existing fields in documents
  • $unset: Remove specified fields from documents

Supported Group Accumulators

  • $sum: Calculate sum
  • $avg: Calculate average
  • $min: Get minimum value
  • $max: Get maximum value
  • $push: Accumulate values into array
  • $first: Get first value
  • $last: Get last value
  • $addToSet: Add unique values to array
  • $stdDevPop: Calculate population standard deviation
  • $stdDevSamp: Calculate sample standard deviation
  • $mergeObjects: Merge objects into a single object

Advanced Features

Schema Validation

const schema = new localgoose.Schema({
  email: {
    type: String,
    required: true,
    validate: {
      validator: function(v) {
        return /\S+@\S+\.\S+/.test(v);
      },
      message: props => `${props.value} is not a valid email!`
    }
  },
  age: {
    type: Number,
    min: [18, 'Must be at least 18'],
    max: [120, 'Must be no more than 120']
  },
  password: {
    type: String,
    minlength: 8,
    match: /^(?=.*\d)(?=.*[a-z])(?=.*[A-Z])/
  }
});

Middleware Hooks

// Document middleware
schema.pre('save', async function() {
  if (this.isModified('password')) {
    this.password = await hash(this.password);
  }
});

// Query middleware
schema.pre('find', function() {
  this.where({ isActive: true });
});

// Aggregation middleware
schema.pre('aggregate', function() {
  this.pipeline().unshift({ $match: { isDeleted: false } });
});

Virtual Population

schema.virtual('posts', {
  ref: 'Post',
  localField: '_id',
  foreignField: 'author',
  justOne: false,
  options: { sort: { createdAt: -1 } }
});

Schema Inheritance

const baseSchema = new localgoose.Schema({
  name: String,
  createdAt: Date
});

const userSchema = new localgoose.Schema({
  email: String,
  password: String
});

userSchema.add(baseSchema);

Custom Types

class Point {
  constructor(x, y) {
    this.x = x;
    this.y = y;
  }
}

const pointSchema = new localgoose.Schema({
  location: {
    type: Point,
    validate: {
      validator: v => v instanceof Point,
      message: 'Invalid point'
    }
  }
});

File Structure

Each model's data is stored in a separate JSON file:

mydb/
  ├── User.json
  ├── Post.json
  └── Comment.json

Error Handling

Localgoose provides detailed error messages for:

  • Schema validation failures
  • Required field violations
  • Type casting errors
  • Query execution errors
  • Reference population errors

Best Practices

  1. Schema Design

    • Define schemas with proper types and validation
    • Use references for related data
    • Implement virtual properties for computed fields
    • Add middleware for common operations
  2. Querying

    • Use proper query operators
    • Limit result sets for better performance
    • Use projection to select only needed fields
    • Populate references only when needed
  3. File Management

    • Regularly backup your JSON files
    • Monitor file sizes
    • Implement proper error handling
    • Use atomic operations when possible
  4. Performance Optimization

    • Use indexes for frequently queried fields
    • Implement pagination for large datasets
    • Cache frequently accessed data
    • Use lean queries when possible
  5. Data Integrity

    • Implement proper validation
    • Use transactions when needed
    • Handle errors gracefully
    • Keep backups up to date

Limitations

  • Not suitable for large datasets (>10MB per collection)
  • No support for transactions
  • Limited query performance compared to real databases
  • Basic relationship support through references
  • No real-time updates or change streams
  • No distributed operations

Contributing

Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.

License

MIT

Author

Anas Qiblawi

Acknowledgments

Inspired by Mongoose, the elegant MongoDB ODM for Node.js.