πΌοΈ Try Aria-UI! Β· π Project Page Β· π Paper Β· β GitHub Β· π Aria-UI Dataset
Key Features of Aria-UI
β¨ Versatile Grounding Instruction Understanding:
Aria-UI handles diverse grounding instructions, excelling in interpreting varied formats, ensuring robust adaptability across dynamic scenarios or when paired with diverse planning agents.
π Context-aware Grounding:
Aria-UI effectively leverages historical input, whether in pure text or text-image-interleaved formats, to improve grounding accuracy.
β‘ Lightweight and Fast:
Aria-UI is a mixture-of-expert model with 3.9B activated parameters per token. It efficiently encodes GUI input of variable sizes and aspect ratios, with ultra-resolution support.
π Superior Performances:
Aria-UI sets new state-of-the-art results on offline and online agent benchmarks.
π 1st place on AndroidWorld with 44.8% task success rate and
π₯ 3rd place on OSWorld with 15.2% task success rate (Dec. 2024).
Quick Start
Installation
pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow
pip install flash-attn --no-build-isolation
# For better inference performance, you can install grouped-gemm, which may take 3-5 minutes to install
pip install grouped_gemm==0.1.6
Inference with vllm (strongly recommended)
First, make sure you install the latest version of vLLM so that it supports Aria-UI
pip install https://vllm-wheels.s3.us-west-2.amazonaws.com/nightly/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl
Here is a code snippet for Aria-UI with vllm.
from PIL import Image, ImageDraw
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
import ast
model_path = "Aria-UI/Aria-UI-base"
def main():
llm = LLM(
model=model_path,
tokenizer_mode="slow",
dtype="bfloat16",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(
model_path, trust_remote_code=True, use_fast=False
)
instruction = "Try Aria."
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{
"type": "text",
"text": "Given a GUI image, what are the relative (0-1000) pixel point coordinates for the element corresponding to the following instruction or description: " + instruction,
}
],
}
]
message = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
outputs = llm.generate(
{
"prompt_token_ids": message,
"multi_modal_data": {
"image": [
Image.open("examples/aria.png"),
],
"max_image_size": 980, # [Optional] The max image patch size, default `980`
"split_image": True, # [Optional] whether to split the images, default `True`
},
},
sampling_params=SamplingParams(max_tokens=50, top_k=1, stop=["<|im_end|>"]),
)
for o in outputs:
generated_tokens = o.outputs[0].token_ids
response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
print(response)
coords = ast.literal_eval(response.replace("<|im_end|>", "").replace("```", "").replace(" ", "").strip())
return coords
if __name__ == "__main__":
main()
Inference with Transfomrers (not recommended)
You can also use the original transformers
API for Aria-UI. For instance:
import argparse
import torch
import os
import json
from tqdm import tqdm
import time
from PIL import Image, ImageDraw
from transformers import AutoModelForCausalLM, AutoProcessor
import ast
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
model_path = "Aria-UI/Aria-UI-base"
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
image_file = "./examples/aria.png"
instruction = "Try Aria."
image = Image.open(image_file).convert("RGB")
messages = [
{
"role": "user",
"content": [
{"text": None, "type": "image"},
{"text": instruction, "type": "text"},
],
}
]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.inference_mode(), torch.amp.autocast("cuda", dtype=torch.bfloat16):
output = model.generate(
**inputs,
max_new_tokens=50,
stop_strings=["<|im_end|>"],
tokenizer=processor.tokenizer,
# do_sample=True,
# temperature=0.9,
)
output_ids = output[0][inputs["input_ids"].shape[1] :]
response = processor.decode(output_ids, skip_special_tokens=True)
print(response)
coords = ast.literal_eval(response.replace("<|im_end|>", "").replace("```", "").replace(" ", "").strip())
Citation
If you find our work helpful, please consider citing.
@article{ariaui,
title={Aria-UI: Visual Grounding for GUI Instructions},
author={Yuhao Yang and Yue Wang and Dongxu Li and Ziyang Luo and Bei Chen and Chao Huang and Junnan Li},
year={2024},
journal={arXiv preprint arXiv:2412.16256},
}
- Downloads last month
- 676
Model tree for Aria-UI/Aria-UI-base
Base model
rhymes-ai/Aria-Base-8K