>>> from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b", padding_side = "left")
>>> tokenizer.pad_token = tokenizer.eos_token

>>> model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m", vocab_size=50280, num_hidden_layers=24, torch_dtype=torch.float32)
>>> model.config.use_cache = True
>>> input_ids = tokenizer(["Hey how are you doing?", "Explain how soy sauce is made"], padding=True, return_tensors= "pt")["input_ids"]

>>> out = model.generate(input_ids, max_new_tokens=10)
>>> print(tokenizer.batch_decode(out))
["<|endoftext|>Hey how are you doing?\n\nI'm a newbie to the game", 'Explain how soy sauce is made.\n\n1. Add the soy sauce to']
Downloads last month
26
Safetensors
Model size
129M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including ArthurZ/mamba-130m