Skip to content

Implementation of the Sliced Wasserstein Autoencoder using PyTorch

License

Notifications You must be signed in to change notification settings

Audrius-St/swae-pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sliced-Wasserstein Autoencoder - Pytorch

Implementation of "Sliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative Model" using PyTorch.

Quick Start

This repo requires Python 3.x.

To quickly get started training with the Sliced Wasserstein Autoencoder and run the MNIST example install the swae python package and example dependencies.

  1. Pull down this repo and run pip install swae-pytorch/
  2. Change directory into the base of the repo and run pip install -r requirements.txt

References

Based on the original Keras implementation by skolouri.

About

Implementation of the Sliced Wasserstein Autoencoder using PyTorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%