Skip to content

Commit

Permalink
Add var-seq-len to FA3 fp16 / bf16 fwd (Dao-AILab#1072)
Browse files Browse the repository at this point in the history
* fwd var-seq-len

* fixes

* benchmark

* fixes

---------

Co-authored-by: Tri Dao <[email protected]>
  • Loading branch information
ipiszy and tridao authored Jul 23, 2024
1 parent cb516f8 commit dfe1a59
Show file tree
Hide file tree
Showing 13 changed files with 1,530 additions and 262 deletions.
273 changes: 273 additions & 0 deletions hopper/benchmark_attn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,273 @@
from functools import partial
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

import time

try:
import cudnn
except ImportError:
cudnn = None


from einops import rearrange, repeat

# from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler
from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler
from flash_attn.flash_attn_interface import flash_attn_func
from flash_attn_interface import flash_attn_func as flash_attn_func_v3, flash_attn_varlen_func as flash_attn_varlen_func_v3

# Need to install triton nightly:
# pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly

try:
from triton_fused_attention import attention as triton_attention
except ImportError:
triton_attention = None

def flops(batch, nheads, seqlen_q, seqlen_k, headdim, causal=False, mode='fwd'):
assert mode in ["fwd", "bwd", "fwd_bwd"]
f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1)
return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f)


def convert_to_cudnn_type(torch_type):
if torch_type == torch.float16:
return cudnn.data_type.HALF
elif torch_type == torch.bfloat16:
return cudnn.data_type.BFLOAT16
elif torch_type == torch.float32:
return cudnn.data_type.FLOAT
elif torch_type == torch.int32:
return cudnn.data_type.INT32
elif torch_type == torch.int64:
return cudnn.data_type.INT64
else:
raise ValueError("Unsupported tensor data type.")


def cudnn_sdpa_setup(q, k, v, grad, causal=False):
b, nheads, seqlen_q, headdim = q.shape
_, _, seqlen_k, _ = k.shape
assert v.shape == (b, nheads, seqlen_k, headdim)
assert cudnn is not None, 'CUDNN is not available'
q_gpu, k_gpu, v_gpu = q, k, v
o_gpu = torch.empty_like(q_gpu)
stats_gpu = torch.empty(b, nheads, seqlen_q, 1, dtype=torch.float32, device=q.device)
graph_forward = cudnn.pygraph(
io_data_type=convert_to_cudnn_type(q.dtype),
intermediate_data_type=cudnn.data_type.FLOAT,
compute_data_type=cudnn.data_type.FLOAT,
)
q_forward = graph_forward.tensor_like(q_gpu.detach())
k_forward = graph_forward.tensor_like(k_gpu.detach())
v_forward = graph_forward.tensor_like(v_gpu.detach())

o_forward, stats_forward = graph_forward.sdpa(
name="sdpa",
q=q_forward,
k=k_forward,
v=v_forward,
is_inference=False,
attn_scale=1.0 / math.sqrt(headdim),
use_causal_mask=causal,
)

o_forward.set_output(True).set_dim(o_gpu.shape).set_stride(o_gpu.stride())
stats_forward.set_output(True).set_data_type(cudnn.data_type.FLOAT)

graph_forward.validate()
graph_forward.build_operation_graph()
graph_forward.create_execution_plans([cudnn.heur_mode.A, cudnn.heur_mode.FALLBACK])
graph_forward.check_support()
graph_forward.build_plans()

variant_pack_forward = {
q_forward: q_gpu,
k_forward: k_gpu,
v_forward: v_gpu,
o_forward: o_gpu,
stats_forward: stats_gpu,
}

dQ_gpu = torch.empty_like(q_gpu)
dK_gpu = torch.empty_like(k_gpu)
dV_gpu = torch.empty_like(v_gpu)
dO_gpu = grad

graph_backward = cudnn.pygraph(
io_data_type=cudnn.data_type.HALF,
intermediate_data_type=cudnn.data_type.FLOAT,
compute_data_type=cudnn.data_type.FLOAT,
)

q_backward = graph_backward.tensor_like(q_gpu.detach())
k_backward = graph_backward.tensor_like(k_gpu.detach())
v_backward = graph_backward.tensor_like(v_gpu.detach())
o_backward = graph_backward.tensor_like(o_gpu.detach())
dO_backward = graph_backward.tensor_like(dO_gpu.detach())
stats_backward = graph_backward.tensor_like(stats_gpu.detach())

dQ_backward, dK_backward, dV_backward = graph_backward.sdpa_backward(
name="sdpa_backward",
q=q_backward,
k=k_backward,
v=v_backward,
o=o_backward,
dO=dO_backward,
stats=stats_backward,
attn_scale=1.0 / math.sqrt(headdim),
use_causal_mask=causal,
)

dQ_backward.set_output(True).set_dim(dQ_gpu.size()).set_stride(dQ_gpu.stride())
dK_backward.set_output(True).set_dim(dK_gpu.size()).set_stride(dK_gpu.stride())
dV_backward.set_output(True).set_dim(dV_gpu.size()).set_stride(dV_gpu.stride())

graph_backward.validate()
graph_backward.build_operation_graph()
graph_backward.create_execution_plans([cudnn.heur_mode.A, cudnn.heur_mode.FALLBACK])
graph_backward.check_support()
graph_backward.build_plans()

variant_pack_backward = {
q_backward: q_gpu,
k_backward: k_gpu,
v_backward: v_gpu,
o_backward: o_gpu,
dO_backward: dO_gpu,
stats_backward: stats_gpu,
dQ_backward: dQ_gpu,
dK_backward: dK_gpu,
dV_backward: dV_gpu,
}

workspace = torch.empty(
max(graph_forward.get_workspace_size(), graph_backward.get_workspace_size()),
device="cuda", dtype=torch.uint8
)

def run_fwd(*args, **kwargs):
graph_forward.execute(variant_pack_forward, workspace)
return o_gpu, stats_gpu

def run_bwd(*args, **kwargs):
graph_backward.execute(variant_pack_backward, workspace)
return dQ_gpu, dK_gpu, dV_gpu

return run_fwd, run_bwd


torch.manual_seed(0)
repeats = 100
dropout_p = 0.0
causal = False
dtype = torch.float16
device = 'cuda'
verbose = False
batch_size = 2
# seqlen = 2048
seqlen = 8192
# seqlen = 4096
# seqlen = 2047
dim = 2048
# headdim = 128
# headdim = 64
headdim = 256

# for mode in ['fwd', 'bwd']:
for mode in ['fwd']:
for headdim in [64, 128, 256]:
# for headdim in [128]:
for seqlen in [1024, 2048, 4096, 8192, 16384, 32768]:
# for seqlen in [8192]:
nheads = dim // headdim
# nheads = 24
# headdim = 64
# batch_size = 64
# seqlen = 512
# nheads = 8
# headdim = 128
nheads_kv = nheads

qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
requires_grad=True)
q = torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, requires_grad=True)
k = torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, requires_grad=True)
v = torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, requires_grad=True)
q_t = q.transpose(1, 2).contiguous().detach().requires_grad_()
k_t = k.transpose(1, 2).contiguous().detach().requires_grad_()
v_t = k.transpose(1, 2).contiguous().detach().requires_grad_()
grad = torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype)
grad_t = grad.transpose(1, 2).contiguous()

bench_fn = benchmark_forward if mode == 'fwd' else partial(benchmark_backward, grad=grad)

for causal in [False, True]:
# for causal in [True]:
print(f"\n### {headdim = }, {seqlen = }, {causal = } ###")
if headdim <= 128 and cudnn is not None:
cudnn_sdpa_fwd, cudnn_sdpa_bwd = cudnn_sdpa_setup(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), grad.transpose(1, 2), causal=causal)
f = flops(batch_size, nheads, seqlen, seqlen, headdim, causal=causal, mode=mode)
_, m0 = bench_fn(flash_attn_func, q, k, v, dropout_p, causal=causal, repeats=repeats, verbose=verbose, desc='Fav2')
if mode == 'bwd':
ref_dv, v.grad = v.grad.clone(), None
ref_dk, k.grad = k.grad.clone(), None
ref_dq, q.grad = q.grad.clone(), None
# pytorch_profiler(flash_attn_func, q, k, v, dropout_p, causal=causal, backward=False)
if headdim <= 128:
if triton_attention is not None:
if mode == 'fwd':
time.sleep(1) # Sleep to avoid residual power throttling from the previous benchmark
_, m3 = benchmark_forward(triton_attention, q_t, k_t, v_t, causal, 1 / math.sqrt(headdim), repeats=repeats, verbose=verbose, desc='Triton')
# TODO: fix Triton numeric errors.
# if mode == 'bwd':
# dv, v_t.grad = v_t.grad.clone(), None
# dk, k_t.grad = k_t.grad.clone(), None
# dq, q_t.grad = q_t.grad.clone(), None
# torch.testing.assert_close(ref_dv, dv.transpose(1, 2), atol=0.05, rtol=0.05)
# torch.testing.assert_close(ref_dk, dk.transpose(1, 2), atol=0.05, rtol=0.05)
# torch.testing.assert_close(ref_dq, dq.transpose(1, 2), atol=0.05, rtol=0.05)
if cudnn is not None:
time.sleep(1) # Sleep to avoid residual power throttling from the previous benchmark
if mode == 'fwd':
_, m2 = benchmark_forward(cudnn_sdpa_fwd, repeats=repeats, verbose=verbose, desc='CuDNN')
else:
cudnn_sdpa_fwd()
_, m2 = benchmark_forward(cudnn_sdpa_bwd, repeats=repeats, verbose=verbose, desc='CuDNN')
dq, dk, dv = cudnn_sdpa_bwd()
torch.testing.assert_close(ref_dv, dv.transpose(1, 2), atol=0.05, rtol=0.05)
torch.testing.assert_close(ref_dk, dk.transpose(1, 2), atol=0.05, rtol=0.05)
torch.testing.assert_close(ref_dq, dq.transpose(1, 2), atol=0.05, rtol=0.05)
# pytorch_profiler(cudnn_sdpa, backward=False)
if headdim == 128 or mode == 'fwd':
time.sleep(1)
_, m1 = bench_fn(flash_attn_func_v3, q, k, v, causal=causal, repeats=repeats, verbose=verbose, desc='Fav3')
q_var = q.reshape(-1, q.shape[-2], q.shape[-1])
k_var = k.reshape(-1, k.shape[-2], k.shape[-1])
v_var = v.reshape(-1, v.shape[-2], v.shape[-1])
lens = torch.full([q.shape[0]], seqlen, dtype=torch.int32)
cu_seqlens = torch.cat([torch.tensor([0], dtype=torch.int32), torch.cumsum(lens, dim=0, dtype=torch.int32)]).cuda()
time.sleep(1)
_, m1_var = bench_fn(flash_attn_varlen_func_v3, q_var, k_var, v_var, cu_seqlens, cu_seqlens, seqlen, seqlen, causal=causal, repeats=repeats, verbose=verbose, desc='Fav3 var len')
if mode == 'bwd':
dv, v.grad = v.grad.clone(), None
dk, k.grad = k.grad.clone(), None
dq, q.grad = q.grad.clone(), None
torch.testing.assert_close(ref_dv, dv, atol=0.05, rtol=0.05)
torch.testing.assert_close(ref_dk, dk, atol=0.05, rtol=0.05)
torch.testing.assert_close(ref_dq, dq, atol=0.05, rtol=0.05)

# pytorch_profiler(flash_attn_func_v3, q, k, v, causal=causal, backward=False)
print(f'Fav2: {m0.mean * 1e3:.3f}ms, {(f / m0.mean * 1e-12):.1f} TFLOPS')
if headdim <= 128:
if triton_attention is not None:
print(f'Triton: {m3.mean * 1e3:.3f}ms, {(f / m3.mean * 1e-12):.1f} TFLOPS')
if cudnn is not None:
print(f'CuDNN: {m2.mean * 1e3:.3f}ms, {(f / m2.mean * 1e-12):.1f} TFLOPS')
if headdim == 128 or mode == 'fwd':
print(f'Fav3: {m1.mean * 1e3:.3f}ms, {(f / m1.mean * 1e-12):.1f} TFLOPS')
print(f'Fav3 varlen: {m1_var.mean * 1e3:.3f}ms, {(f / m1_var.mean * 1e-12):.1f} TFLOPS')

Loading

0 comments on commit dfe1a59

Please sign in to comment.