Skip to content

A modular, multi-agent AI research and report generation platform. Enter any topic, and PolyAgent Research Intelligence orchestrates multiple AI agents to retrieve literature, analyze data, and generate a polished report. Built for researchers and AI/ML engineers, leveraging LangChain, FastAPI, PostgreSQL, advanced LLMs, and a Next.js front-end.

License

Notifications You must be signed in to change notification settings

BjornMelin/polyagent-research-intelligence

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

8 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🧠 Multi-Agent Research System

Next.js React TypeScript Tailwind CSS FastAPI Python pnpm

MIT License GitHub LinkedIn

πŸ“‘ Table of Contents

🌟 Overview

The Multi-Agent Research System is a cutting-edge platform designed to revolutionize research by leveraging the power of multiple AI agents. This system allows users to input research topics, and then utilizes a team of specialized agents, orchestrated by LangChain and OpenRouter, to perform in-depth research, analysis, and report generation. The system is built with a modern web development stack, featuring a Next.js frontend and a FastAPI backend.

πŸš€ Getting Started

  1. Clone the repository:

    git clone https://github.com/BjornMelin/multi-agent-research-system.git
    cd multi-agent-research-system
  2. Install dependencies:

    • Make sure you have pnpm installed:
    npm install -g pnpm
    • Then, install project dependencies
    pnpm install
  3. Run both frontend and backend:

    pnpm run frontend
    pnpm run backend
  4. Open your browser and navigate to http://localhost:3000 for the frontend. The backend will typically run on port 8000.

✨ Features

  • πŸ€– Multi-Agent System: Utilizes multiple AI agents, each specialized in tasks like research, analysis, writing, and proofreading.
  • 🧠 Advanced AI Models: Integrates with powerful language models, including DeepSeek-v3, LLaMA3.3-70B-Instruct, GPT-4o, and PHI-4 via OpenRouter.
  • πŸ“ Research Topic Submission: User-friendly interface for submitting research topics and queries.
  • πŸ”„ Real-time Progress Updates: Displays real-time updates on the progress of the multi-agent workflow using WebSockets or polling.
  • πŸ“Š Data Visualization: Provides a dashboard to visualize agent outputs and workflow stages.
  • πŸ“„ Report Generation: Automatically generates structured research reports based on agent findings.
  • πŸ“₯ Report Download: Allows users to download reports in PDF or DOCX formats.
  • πŸ—ƒοΈ Data Storage: Stores data locally using PostgreSQL and FAISS, with scalability for future AWS deployment.
  • πŸ” Monitoring: Employs Prometheus and Grafana for system performance monitoring.

πŸ—‚οΈ Project Structure

Mermaid Diagram

graph TD
    A[User] --> B(Next.js Frontend);
    B --> C{FastAPI Backend};
    C --> D[Research Agent];
    C --> E[Analysis Agent];
    C --> F[Writing Agent];
    C --> G[Proofreading Agent];
    D --> H[DeepSeek-v3];
    E --> I[Python Libraries];
    F --> J[LLaMA3.3];
    G --> K[PHI-4];
    H --> L[OpenRouter];
    J --> L;
    K --> L;
    C --> M[PostgreSQL];
    C --> N[FAISS];
    C --> O[LocalStack];
    M --> P[User Queries, Workflow States];
    N --> Q[Document Embeddings];
    O --> R[PDFs, DOCXs];
    S[Prometheus] --> C;
    T[Grafana] --> S;
Loading

File Tree

multi-agent-research-system/
β”œβ”€β”€ .gitignore
β”œβ”€β”€ pnpm-lock.yaml
β”œβ”€β”€ pnpm-workspace.yaml
β”œβ”€β”€ package.json (Root)
β”œβ”€β”€ backend/
β”‚ β”œβ”€β”€ main.py
β”‚ β”œβ”€β”€ requirements.txt
β”‚ β”œβ”€β”€ venv/
β”‚ └── ...
└── frontend/
β”œβ”€β”€ app/
β”‚ β”œβ”€β”€ about/
β”‚ β”‚ └── page.tsx
β”‚ β”œβ”€β”€ api/
β”‚ β”‚ └── feedback/
β”‚ β”‚ └── route.ts
β”‚ β”œβ”€β”€ error.tsx
β”‚ β”œβ”€β”€ feedback/
β”‚ β”‚ └── page.tsx
β”‚ β”œβ”€β”€ globals.css
β”‚ β”œβ”€β”€ layout.tsx
β”‚ └── page.tsx
β”œβ”€β”€ components/
β”‚ β”œβ”€β”€ forms/
β”‚ β”‚ β”œβ”€β”€ feedback-form.tsx
β”‚ β”‚ └── research-topic-form.tsx
β”‚ β”œβ”€β”€ layout/
β”‚ β”‚ β”œβ”€β”€ footer.tsx
β”‚ β”‚ β”œβ”€β”€ header.tsx
β”‚ β”‚ └── success-message.tsx
β”‚ β”œβ”€β”€ pages/
β”‚ β”‚ β”œβ”€β”€ about-page.tsx
β”‚ β”‚ β”œβ”€β”€ feedback-page.tsx
β”‚ β”‚ └── home-page.tsx
β”‚ β”œβ”€β”€ sections/
β”‚ β”‚ β”œβ”€β”€ cta-section.tsx
β”‚ β”‚ β”œβ”€β”€ feature-card.tsx
β”‚ β”‚ └── hero-section.tsx
β”‚ β”œβ”€β”€ theme-provider.tsx
β”‚ └── ui/
β”‚ β”œβ”€β”€ ... (ShadCN-UI components)
β”œβ”€β”€ hooks/
β”‚ └── use-toast.ts
β”œβ”€β”€ lib/
β”‚ β”œβ”€β”€ schemas.ts
β”‚ └── utils.ts
β”œβ”€β”€ public/
β”œβ”€β”€ .eslintrc.json
β”œβ”€β”€ components.json
β”œβ”€β”€ next.config.js
β”œβ”€β”€ package.json (Frontend)
β”œβ”€β”€ postcss.config.js
β”œβ”€β”€ tailwind.config.ts
└── tsconfig.json

πŸ›  Tech Stack

  • Frontend:
  • Backend:
    • Framework: FastAPI
    • Agent Orchestration: LangChain
    • Asynchronous Tasks: Celery or Ray
    • Web Server: Uvicorn
  • Database:
    • Primary Database: PostgreSQL
    • ORM: SQLAlchemy
    • Vector Storage: FAISS (Local), Pinecone/Weaviate (Future)
  • LLM Integration:
    • API Gateway: OpenRouter
    • Models:
      • DeepSeek-v3 (Retrieval, Summarization)
      • LLaMA3.3-70B-Instruct (Report Generation)
      • GPT-4o (Reasoning, Hypothesis Generation)
      • PHI-4 (Proofreading, Grammar)
  • Monitoring:
  • File Storage:
    • Local: LocalStack (AWS S3 Emulation)
    • Cloud (Future): AWS S3
  • Caching:
    • In-Memory Cache: Redis (Future)
  • Package Manager: pnpm

🀝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feat/version/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feat/version/AmazingFeature)
  5. Open a Pull Request

πŸ‘¨β€πŸ’» Author

Bjorn Melin

AWS Certified Solutions Architect AWS Certified Developer AWS Certified SysOps Administrator AWS Certified Machine Learning Engineer

AWS-certified Solutions Architect, Developer, SysOps Administrator, and Machine Learning Engineer with expertise in cloud architecture and modern development practices. Connect with me on:

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


Built with ❀️ by Bjorn Melin

```

About

A modular, multi-agent AI research and report generation platform. Enter any topic, and PolyAgent Research Intelligence orchestrates multiple AI agents to retrieve literature, analyze data, and generate a polished report. Built for researchers and AI/ML engineers, leveraging LangChain, FastAPI, PostgreSQL, advanced LLMs, and a Next.js front-end.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published