-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Christoph Schmidl
committed
Jul 29, 2018
1 parent
20ae96d
commit 57a8a2b
Showing
7 changed files
with
495 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Chapter 1 - Introduction\n", | ||
"\n", | ||
"\n", | ||
"## 1.1 - Example: Polynomial Curve Fitting\n", | ||
"\n", | ||
"## 1.2 - Probability Theory\n", | ||
"\n", | ||
"### 1.2.1 - Probability densities\n", | ||
"### 1.2.2 - Expectations and covariances\n", | ||
"### 1.2.3 - Bayesian probabilities\n", | ||
"### 1.2.4 - The Gaussian distribution\n", | ||
"### 1.2.5 - Curve fitting re-visited\n", | ||
"### 1.2.6 - Bayesian curve fitting\n", | ||
"\n", | ||
"## 1.3 - Model Selection\n", | ||
"## 1.4 - The Curse of Dimensionality\n", | ||
"## 1.5 - Decision Theory\n", | ||
"\n", | ||
"### 1.5.1 - Minimizing the misclassification rate\n", | ||
"### 1.5.2 - Minimizing the expected loss\n", | ||
"### 1.5.3 - The reject option\n", | ||
"### 1.5.4 - Inference and decision\n", | ||
"### 1.5.5 - Loss functions for regression\n", | ||
"\n", | ||
"## 1.6 - Information Theory\n", | ||
"\n", | ||
"### 1.6.1 - Relative entropy an mutual information" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# TODO: Explanations and code examples" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "py35", | ||
"language": "python", | ||
"name": "py35" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.5.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Chapter 2 - Probability Distributions\n", | ||
"\n", | ||
"## 2.1 - Binary Variables\n", | ||
"\n", | ||
"### 2.1.1 - The beta distribution\n", | ||
"\n", | ||
"## 2.2 - Multinominal Variables\n", | ||
"\n", | ||
"### 2.2.1 - The Dirichlet distribution\n", | ||
"\n", | ||
"## 2.3 - The Gaussian Distribution\n", | ||
"\n", | ||
"### 2.3.1 - Conditional Gaussian distributions\n", | ||
"### 2.3.2 - Marginal Gaussian distributions\n", | ||
"### 2.3.3 - Bayes' theorem for Gaussian variables\n", | ||
"### 2.3.4 - Maximum likelihood for the Gaussian\n", | ||
"### 2.3.5 - Sequential estimation\n", | ||
"### 2.3.6 - Bayesian inference for the Gaussian\n", | ||
"### 2.3.7 - Student's t-distribution\n", | ||
"### 2.3.8 - Periodic variables\n", | ||
"### 2.3.9 - Mixtures of Gaussians\n", | ||
"\n", | ||
"## 2.4 - The Exponential Family\n", | ||
"\n", | ||
"### 2.4.1 - Maximum likelihood and sufficient statistics\n", | ||
"### 2.4.2 - Conjugate priors\n", | ||
"### 2.4.3 - Noninformative priors\n", | ||
"\n", | ||
"## 2.5 - Nonparametric Methods\n", | ||
"\n", | ||
"### 2.5.1 - Kernel density estimators\n", | ||
"### 2.5.2 - Nearest-neighbour methods" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# TODO: Explanations and code examples" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "py35", | ||
"language": "python", | ||
"name": "py35" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.5.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Chapter 3 - Linear Models for Regression\n", | ||
"\n", | ||
"## 3.1 - Linear Basis Function Models\n", | ||
"\n", | ||
"### 3.1.1 - Maximum likelihood and least squares\n", | ||
"### 3.1.2 - Geometry of least squares\n", | ||
"### 3.1.3 - Sequential learning\n", | ||
"### 3.1.4 - Regularized least squares\n", | ||
"### 3.1.5 - Multiple outputs\n", | ||
"\n", | ||
"## 3.2 - The Bias-Variance Decomposition\n", | ||
"## 3.3 - Bayesian Linear Regression\n", | ||
"\n", | ||
"### 3.3.1 - Parameter distribution\n", | ||
"### 3.3.2 - Predictive distribution\n", | ||
"### 3.3.3 - Equivalent kernel\n", | ||
"\n", | ||
"## 3.4 - Bayesian Model Comparison\n", | ||
"## 3.5 - The Evidence Approximation\n", | ||
"\n", | ||
"### 3.5.1 - Evaluation of the evidence function\n", | ||
"### 3.5.2 - Maximizing the evidence function\n", | ||
"### 3.5.3 - Effective number of parameters\n", | ||
"\n", | ||
"## 3.6 - Limitations of Fixed Basis Functions" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# TODO: Explanations and code examples" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "py35", | ||
"language": "python", | ||
"name": "py35" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.5.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
78 changes: 78 additions & 0 deletions
78
notebooks/Chapter_04-Linear_Models_for_Classification.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Chapter 4 - Linear Models for Classification\n", | ||
"\n", | ||
"## 4.1 - Discriminant Functions\n", | ||
"\n", | ||
"### 4.1.1 - Two classes\n", | ||
"### 4.1.2 - Multiple classes\n", | ||
"### 4.1.3 - Least squares for classification\n", | ||
"### 4.1.4 - Fisher's linear discriminant\n", | ||
"### 4.1.5 - Relation to least squares\n", | ||
"### 4.1.6 - Fisher's dicriminant for multiple classes\n", | ||
"### 4.1.7 - The perceptron algorithm\n", | ||
"\n", | ||
"## 4.2 - Probabilistic Generative Models\n", | ||
"\n", | ||
"### 4.2.1 - Continuous inputs\n", | ||
"### 4.2.2 - Maximum likelihood solution\n", | ||
"### 4.2.3 - Discrete features\n", | ||
"### 4.2.4 - Exponential family\n", | ||
"\n", | ||
"## 4.3 - Probabilistic Discriminative Models\n", | ||
"\n", | ||
"### 4.3.1 - Fixed basis functions\n", | ||
"### 4.3.2 - Logistic regression\n", | ||
"### 4.3.3 - Iterative reweighted least squares\n", | ||
"### 4.3.4 - Multiclass logistic regression\n", | ||
"### 4.3.5 - Probit regression\n", | ||
"### 4.3.6 - Canonical link functions\n", | ||
"\n", | ||
"## 4.4 - The Laplace Approximation\n", | ||
"\n", | ||
"### 4.4.1 - Model comparison and BIC\n", | ||
"\n", | ||
"## 4.5 - Bayesian Logistic Regression\n", | ||
"\n", | ||
"### 4.5.1 - Laplace approximation\n", | ||
"### 4.5.2 - Predictive distribution" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# TODO: Explanations and code examples" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "py35", | ||
"language": "python", | ||
"name": "py35" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.5.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Chapter 5 - Neural Networks\n", | ||
"\n", | ||
"## 5.1 - Feed-forward Network Functions\n", | ||
"\n", | ||
"### 5.1.1 - Weight-space symmetries\n", | ||
"\n", | ||
"## 5.2 - Network Training\n", | ||
"\n", | ||
"### 5.2.1 - Parameter optimization\n", | ||
"### 5.2.2 - Local quadratic approximation\n", | ||
"### 5.2.3 - Use of gradient information\n", | ||
"### 5.2.4 - Gradient descent optimization\n", | ||
"\n", | ||
"## 5.3 - Error Backpropagation\n", | ||
"\n", | ||
"### 5.3.1 - Evaluation of error-function derivatives\n", | ||
"### 5.3.2 - A simple example\n", | ||
"### 5.3.3 - Efficiency of backpropagation\n", | ||
"### 5.3.4 - The Jacobian matrix\n", | ||
"\n", | ||
"## 5.4 - The Hessian Matrix\n", | ||
"\n", | ||
"### 5.4.1 - Diagonal approximation\n", | ||
"### 5.4.2 - Outer product approximation\n", | ||
"### 5.4.3 - Inverse Hessian\n", | ||
"### 5.4.4 - Finite differences\n", | ||
"### 5.4.5 - Exact evaluation of the Hessian\n", | ||
"### 5.4.6 - Fast multiplication by the Hessian\n", | ||
"\n", | ||
"## 5.5 - Regularization in Neural Networks\n", | ||
"\n", | ||
"### 5.5.1 - Consistent Gaussian priors\n", | ||
"### 5.5.2 - Early stopping\n", | ||
"### 5.5.3 - Invariances\n", | ||
"### 5.5.4 - Tangent propagation\n", | ||
"### 5.5.5 - Training with transformed data\n", | ||
"### 5.5.6 - Convolutional networks\n", | ||
"### 5.5.7 - Soft weight sharing\n", | ||
"\n", | ||
"## 5.6 - Mixture Density Networks\n", | ||
"## 5.7 - Bayesian Neural Networks\n", | ||
"\n", | ||
"### 5.7.1 - Posterior parameter distribution\n", | ||
"### 5.7.2 - Hyperparameter optimization\n", | ||
"### 5.7.3 - Bayesian neural networks for classification" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# TODO: Explanations and code examples" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "py35", | ||
"language": "python", | ||
"name": "py35" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.5.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.