Skip to content

[WIP] dimension reduction playground #360

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 10 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions examples/DimensionReduction/Project.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
[deps]
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
EnsembleKalmanProcesses = "aa8a2aa5-91d8-4396-bcef-d4f2ec43552d"
JLD2 = "033835bb-8acc-5ee8-8aae-3f567f8a3819"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
363 changes: 363 additions & 0 deletions examples/DimensionReduction/build_and_compare_diagnostic_matrices.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,363 @@
using LinearAlgebra
using EnsembleKalmanProcesses
using EnsembleKalmanProcesses.ParameterDistributions
using Statistics
using Distributions
using Plots
using JLD2
#Utilities
function cossim(x::VV1, y::VV2) where {VV1 <: AbstractVector, VV2 <: AbstractVector}
return dot(x, y) / (norm(x) * norm(y))
end
function cossim_pos(x::VV1, y::VV2) where {VV1 <: AbstractVector, VV2 <: AbstractVector}
return abs(cossim(x, y))
end
function cossim_cols(X::AM1, Y::AM2) where {AM1 <: AbstractMatrix, AM2 <: AbstractMatrix}
return [cossim_pos(c1, c2) for (c1, c2) in zip(eachcol(X), eachcol(Y))]
end

n_samples = 2000 # paper uses 5e5
n_trials = 20 # get from generate_inverse_problem_data

if !isfile("ekp_1.jld2")
include("generate_inverse_problem_data.jl") # will run n trials
else
include("forward_maps.jl")
end


Hu_evals = []
Hg_evals = []
Hu_mean_evals = []
Hg_mean_evals = []
Hu_ekp_prior_evals = []
Hg_ekp_prior_evals = []
Hu_ekp_final_evals = []
Hg_ekp_final_evals = []

sim_Hu_means = []
sim_Hg_means = []
sim_G_samples = []
sim_U_samples = []
sim_Hu_ekp_prior = []
sim_Hg_ekp_prior = []
sim_Hu_ekp_final = []
sim_Hg_ekp_final = []
sim_Huy_ekp_final = []

for trial in 1:n_trials

# Load the EKP iterations
loaded = load("ekp_$(trial).jld2")
ekp = loaded["ekp"]
prior = loaded["prior"]
obs_noise_cov = loaded["obs_noise_cov"]
y = loaded["y"]
model = loaded["model"]
input_dim = size(get_u(ekp, 1), 1)
output_dim = size(get_g(ekp, 1), 1)

prior_cov = cov(prior)
prior_invrt = sqrt(inv(prior_cov))
prior_rt = sqrt(prior_cov)
obs_invrt = sqrt(inv(obs_noise_cov))
obs_inv = inv(obs_noise_cov)

# random samples
prior_samples = sample(prior, n_samples)

# [1a] Large-sample diagnostic matrices with perfect grad(Baptista et al 2022)
@info "Construct good matrix ($(n_samples) samples of prior, perfect grad)"
gradG_samples = jac_forward_map(prior_samples, model)
Hu = zeros(input_dim, input_dim)
Hg = zeros(output_dim, output_dim)

for j in 1:n_samples
Hu .+= 1 / n_samples * prior_rt * gradG_samples[j]' * obs_inv * gradG_samples[j] * prior_rt
Hg .+= 1 / n_samples * obs_invrt * gradG_samples[j] * prior_cov * gradG_samples[j]' * obs_invrt
end

# [1b] One-point approximation at mean value, with perfect grad
@info "Construct with mean value (1 sample), perfect grad"
prior_mean_appr = mean(prior) # approximate mean
gradG_at_mean = jac_forward_map(prior_mean_appr, model)[1]
# NB the logpdf of the prior at the ~mean is 1805 so pdf here is ~Inf
Hu_mean = prior_rt * gradG_at_mean' * obs_inv * gradG_at_mean * prior_rt
Hg_mean = obs_invrt * gradG_at_mean * prior_cov * gradG_at_mean' * obs_invrt

# [2a] One-point approximation at mean value with SL grad
@info "Construct with mean value prior (1 sample), SL grad"
g = get_g(ekp, 1)
u = get_u(ekp, 1)
N_ens = get_N_ens(ekp)
C_at_prior = cov([u; g], dims = 2) # basic cross-cov
Cuu = C_at_prior[1:input_dim, 1:input_dim]
svdCuu = svd(Cuu)
nz = min(N_ens - 1, input_dim) # nonzero sv's
pinvCuu = svdCuu.U[:, 1:nz] * Diagonal(1 ./ svdCuu.S[1:nz]) * svdCuu.Vt[1:nz, :] # can replace with localized covariance
Cuu_invrt = svdCuu.U * Diagonal(1 ./ sqrt.(svdCuu.S)) * svdCuu.Vt
Cug = C_at_prior[(input_dim + 1):end, 1:input_dim]
# SL_gradG = (pinvCuu * Cug')' # approximates ∇G with ensemble.
# Hu_ekp_prior = prior_rt * SL_gradG' * obs_inv * SL_gradG * prior_rt
# Hg_ekp_prior = obs_invrt * SL_gradG * prior_cov * SL_gradG' * obs_invrt
Hu_ekp_prior = Cuu_invrt * Cug' * obs_inv * Cug * Cuu_invrt
Hg_ekp_prior = obs_invrt * Cug * pinvCuu * Cug' * obs_invrt

# [2b] One-point approximation at mean value with SL grad
@info "Construct with mean value final (1 sample), SL grad"
final_it = length(get_g(ekp))
g = get_g(ekp, final_it)
u = get_u(ekp, final_it)
C_at_final = cov([u; g], dims = 2) # basic cross-cov
Cuu = C_at_final[1:input_dim, 1:input_dim]
svdCuu = svd(Cuu)
nz = min(N_ens - 1, input_dim) # nonzero sv's
pinvCuu = svdCuu.U[:, 1:nz] * Diagonal(1 ./ svdCuu.S[1:nz]) * svdCuu.Vt[1:nz, :] # can replace with localized covariance
Cuu_invrt = svdCuu.U * Diagonal(1 ./ sqrt.(svdCuu.S)) * svdCuu.Vt
Cug = C_at_final[(input_dim + 1):end, 1:input_dim] # TODO: Isn't this Cgu?
# SL_gradG = (pinvCuu * Cug')' # approximates ∇G with ensemble.
# Hu_ekp_final = prior_rt * SL_gradG' * obs_inv * SL_gradG * prior_rt # here still using prior roots not Cuu
# Hg_ekp_final = obs_invrt * SL_gradG * prior_cov * SL_gradG' * obs_invrt
Hu_ekp_final = Cuu_invrt * Cug' * obs_inv * Cug * Cuu_invrt
Hg_ekp_final = obs_invrt * Cug * pinvCuu * Cug' * obs_invrt

myCug = Cug'
Huy_ekp_final = N_ens \ Cuu_invrt * myCug*obs_inv'*sum(
(y - gg) * (y - gg)' for gg in eachcol(g)
)*obs_inv*myCug' * Cuu_invrt

# cosine similarity of evector directions
svdHu = svd(Hu)
svdHg = svd(Hg)
svdHu_mean = svd(Hu_mean)
svdHg_mean = svd(Hg_mean)
svdHu_ekp_prior = svd(Hu_ekp_prior)
svdHg_ekp_prior = svd(Hg_ekp_prior)
svdHu_ekp_final = svd(Hu_ekp_final)
svdHg_ekp_final = svd(Hg_ekp_final)
svdHuy_ekp_final = svd(Huy_ekp_final)
@info """

samples -> mean
$(cossim_cols(svdHu.V, svdHu_mean.V)[1:3])
$(cossim_cols(svdHg.V, svdHg_mean.V)[1:3])

samples + deriv -> mean + (no deriv) prior
$(cossim_cols(svdHu.V, svdHu_ekp_prior.V)[1:3])
$(cossim_cols(svdHg.V, svdHg_ekp_prior.V)[1:3])

samples + deriv -> mean + (no deriv) final
$(cossim_cols(svdHu.V, svdHu_ekp_final.V)[1:3])
$(cossim_cols(svdHg.V, svdHg_ekp_final.V)[1:3])

mean+(no deriv): prior -> final
$(cossim_cols(svdHu_ekp_prior.V, svdHu_ekp_final.V)[1:3])
$(cossim_cols(svdHg_ekp_prior.V, svdHg_ekp_final.V)[1:3])

y-aware -> samples
$(cossim_cols(svdHu.V, svdHuy_ekp_final.V)[1:3])
"""
push!(sim_Hu_means, cossim_cols(svdHu.V, svdHu_mean.V))
push!(sim_Hg_means, cossim_cols(svdHg.V, svdHg_mean.V))
push!(Hu_evals, svdHu.S)
push!(Hg_evals, svdHg.S)
push!(Hu_mean_evals, svdHu_mean.S)
push!(Hg_mean_evals, svdHg_mean.S)
push!(Hu_ekp_prior_evals, svdHu_ekp_prior.S)
push!(Hg_ekp_prior_evals, svdHg_ekp_prior.S)
push!(Hu_ekp_final_evals, svdHu_ekp_final.S)
push!(Hg_ekp_final_evals, svdHg_ekp_final.S)
push!(sim_Hu_ekp_prior, cossim_cols(svdHu.V, svdHu_ekp_prior.V))
push!(sim_Hg_ekp_prior, cossim_cols(svdHg.V, svdHg_ekp_prior.V))
push!(sim_Hu_ekp_final, cossim_cols(svdHu.V, svdHu_ekp_final.V))
push!(sim_Hg_ekp_final, cossim_cols(svdHg.V, svdHg_ekp_final.V))
push!(sim_Huy_ekp_final, cossim_cols(svdHu.V, svdHuy_ekp_final.V))

# cosine similarity to output svd from samples
G_samples = forward_map(prior_samples, model)'
svdG = svd(G_samples) # nonsquare, so permuted so evectors are V
svdU = svd(prior_samples')

push!(sim_G_samples, cossim_cols(svdHg.V, svdG.V))
push!(sim_U_samples, cossim_cols(svdHu.V, svdU.V))

save(
"diagnostic_matrices_$(trial).jld2",
"Hu",
Hu,
"Hg",
Hg,
"Hu_mean",
Hu_mean,
"Hg_mean",
Hg_mean,
"Hu_ekp_prior",
Hu_ekp_prior,
"Hg_ekp_prior",
Hg_ekp_prior,
"Hu_ekp_final",
Hu_ekp_final,
"Hg_ekp_final",
Hg_ekp_final,
"Huy_ekp_final",
Huy_ekp_final,
"svdU",
svdU,
"svdG",
svdG,
)
end

using Plots.Measures
gr(size = (1.6 * 1200, 600), legend = true, bottom_margin = 10mm, left_margin = 10mm)
default(titlefont = 20, legendfontsize = 12, guidefont = 14, tickfont = 14)

normal_Hg_evals = [ev ./ ev[1] for ev in Hg_evals]
normal_Hg_mean_evals = [ev ./ ev[1] for ev in Hg_mean_evals]
normal_Hg_ekp_prior_evals = [ev ./ ev[1] for ev in Hg_ekp_prior_evals]
normal_Hg_ekp_final_evals = [ev ./ ev[1] for ev in Hg_ekp_final_evals]

loaded1 = load("ekp_1.jld2")
ekp_tmp = loaded1["ekp"]
input_dim = size(get_u(ekp_tmp, 1), 1)
output_dim = size(get_g(ekp_tmp, 1), 1)

truncation = 15
truncation = Int(minimum([truncation, input_dim, output_dim]))
# color names in https://github.com/JuliaGraphics/Colors.jl/blob/master/src/names_data.jl

pg = plot(
1:truncation,
mean(sim_Hg_means)[1:truncation],
ribbon = (std(sim_Hg_means) / sqrt(n_trials))[1:truncation],
color = :blue,
label = "sim (samples v mean)",
legend = false,
)

plot!(
pg,
1:truncation,
mean(sim_Hg_ekp_prior)[1:truncation],
ribbon = (std(sim_Hg_ekp_prior) / sqrt(n_trials))[1:truncation],
color = :red,
alpha = 0.3,
label = "sim (samples v mean-no-der) prior",
)
plot!(
pg,
1:truncation,
mean(sim_Hg_ekp_final)[1:truncation],
ribbon = (std(sim_Hg_ekp_final) / sqrt(n_trials))[1:truncation],
color = :gold,
label = "sim (samples v mean-no-der) final",
)

plot!(pg, 1:truncation, mean(normal_Hg_evals)[1:truncation], color = :black, label = "normalized eval (samples)")
plot!(
pg,
1:truncation,
mean(normal_Hg_mean_evals)[1:truncation],
color = :black,
alpha = 0.7,
label = "normalized eval (mean)",
)

plot!(
pg,
1:truncation,
mean(normal_Hg_ekp_prior_evals)[1:truncation],
color = :black,
alpha = 0.3,
label = "normalized eval (mean-no-der)",
)

plot!(pg, 1:truncation, mean(normal_Hg_ekp_final_evals)[1:truncation], color = :black, alpha = 0.3)


plot!(
pg,
1:truncation,
mean(sim_G_samples)[1:truncation],
ribbon = (std(sim_G_samples) / sqrt(n_trials))[1:truncation],
color = :green,
label = "similarity (PCA)",
)

title!(pg, "Similarity of spectrum of output diagnostic")


normal_Hu_evals = [ev ./ ev[1] for ev in Hu_evals]
normal_Hu_mean_evals = [ev ./ ev[1] for ev in Hu_mean_evals]
normal_Hu_ekp_prior_evals = [ev ./ ev[1] for ev in Hu_ekp_prior_evals]
normal_Hu_ekp_final_evals = [ev ./ ev[1] for ev in Hu_ekp_final_evals]


pu = plot(
1:truncation,
mean(sim_Hu_means)[1:truncation],
ribbon = (std(sim_Hu_means) / sqrt(n_trials))[1:truncation],
color = :blue,
label = "sim (samples v mean)",
)

plot!(pu, 1:truncation, mean(normal_Hu_evals)[1:truncation], color = :black, label = "normalized eval (samples)")
plot!(
pu,
1:truncation,
mean(normal_Hu_mean_evals)[1:truncation],
color = :black,
alpha = 0.7,
label = "normalized eval (mean)",
)
plot!(
pu,
1:truncation,
mean(normal_Hu_ekp_prior_evals)[1:truncation],
color = :black,
alpha = 0.3,
label = "normalized eval (mean-no-der)",
)
plot!(pu, 1:truncation, mean(normal_Hu_ekp_final_evals)[1:truncation], color = :black, alpha = 0.3)

plot!(
pu,
1:truncation,
mean(sim_U_samples)[1:truncation],
ribbon = (std(sim_U_samples) / sqrt(n_trials))[1:truncation],
color = :green,
label = "similarity (PCA)",
)

plot!(
pu,
1:truncation,
mean(sim_Hu_ekp_prior)[1:truncation],
ribbon = (std(sim_Hu_ekp_prior) / sqrt(n_trials))[1:truncation],
color = :red,
alpha = 0.3,
label = "sim (samples v mean-no-der) prior",
)
plot!(
pu,
1:truncation,
mean(sim_Hu_ekp_final)[1:truncation],
ribbon = (std(sim_Hu_ekp_final) / sqrt(n_trials))[1:truncation],
color = :gold,
label = "sim (samples v mean-no-der) final",
)
plot!(
pu,
1:truncation,
mean(sim_Huy_ekp_final)[1:truncation],
ribbon = (std(sim_Huy_ekp_final) / sqrt(n_trials))[1:truncation],
color = :purple,
label = "sim (samples v y-aware) final",
)

title!(pu, "Similarity of spectrum of input diagnostic")

layout = @layout [a b]
p = plot(pu, pg, layout = layout)

savefig(p, "spectrum_comparison.png")
Loading
Loading