See axolotl config
axolotl version: 0.3.0
base_model: microsoft/phi-2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: tatsu-lab/alpaca
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./phi-sft-out
sequence_len: 2048
sample_packing: false # currently unsupported
pad_to_sequence_len:
adapter:
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.1
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embd
- lm_head
wandb_project: Deepseek Wa
wandb_entity: lucasatkins81
wandb_watch:
wandb_name: Phi2 a6000 FT
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1.5
optimizer: paged_adamw_8bit
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
pad_token: "<|endoftext|>"
phi-sft-out
This model is a fine-tuned version of microsoft/phi-2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4382 | 0.0 | 1 | nan |
0.9139 | 0.25 | 12351 | nan |
0.016 | 0.5 | 24702 | nan |
0.0538 | 0.75 | 37053 | nan |
0.6701 | 1.0 | 49404 | nan |
0.0018 | 1.25 | 61755 | nan |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Crystalcareai/PhiAlpaca2
Base model
microsoft/phi-2