Skip to content

D641593/MixNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

e1e45d4 · Feb 9, 2025

History

27 Commits
Aug 28, 2023
Aug 28, 2023
Aug 28, 2023
Aug 28, 2023
Sep 4, 2023
Aug 28, 2023
Aug 28, 2023
Aug 28, 2023
Aug 28, 2023
Aug 28, 2023
Sep 15, 2023
Feb 9, 2025
Aug 28, 2023
Aug 28, 2023
Oct 12, 2023

Repository files navigation

MixNet

This is the official code for MixNet: Toward Accurate Detection of Challenging Scene Text in the Wild

docker environment

Click Here

Evaluation Result on Benchmark

Datasets Prec. (%) Recall (%) F1-score (%) weight (.pth)
Total-Text 93.0 88.1 90.5 model/Google
MSRA-TD500 90.7 88.1 89.4 model/Google
ICDAR-ArT 83.0 76.7 79.7 model/Google
CTW1500 91.4 88.3 89.8 model/Google

Evaluation Result on CTW1500

This section elucidates the performance evaluation on the CTW1500 dataset.

When utilizing the TIoU-metric-python3 scoring code, our model's scores are as presented below:

Datasets Prec. (%) Recall (%) F1-score (%)
CTW1500 90.3 84.8 87.5

However, upon inputting MixNet's output into the DPText-DETR's calculation program, the ensuing results differ:

Datasets Prec. (%) Recall (%) F1-score (%)
CTW1500 91.4 88.3 89.8

I'm not sure why the data is inconsistent. Therefore, I've provided the scores obtained from both calculations for reference.

Eval

  # Total-Text
  python3 eval_mixNet.py --net FSNet_M --scale 1 --exp_name Totaltext_mid --checkepoch 622 --test_size 640 1024 --dis_threshold 0.3 --cls_threshold 0.85 --mid True
  # CTW1500
  python3 eval_mixNet.py --net FSNet_hor --scale 1 --exp_name Ctw1500 --checkepoch 925 --test_size 640 1024 --dis_threshold 0.3 --cls_threshold 0.85
  # MSRA-TD500
  python3 eval_mixNet.py --net FSNet_M --scale 1 --exp_name TD500HUST_mid --checkepoch 284 --test_size 640 1024 --dis_threshold 0.3 --cls_threshold 0.85 --mid True
  # ArT
  python3 eval_mixNet.py --net FSNet_M --scale 1 --exp_name ArT_mid --checkepoch 160 --test_size 960 2880 --dis_threshold 0.4 --cls_threshold 0.8 --mid True

Acknowledgement

This code has been modified based on the foundation laid by TextBPN++.
We use code from Connected_components_PyTorch as post-processing.
Thanks for their great work!