Skip to content

Commit

Permalink
feat!: Docling v2 (#117)
Browse files Browse the repository at this point in the history
---------

Signed-off-by: Christoph Auer <[email protected]>
Signed-off-by: Maxim Lysak <[email protected]>
Signed-off-by: Michele Dolfi <[email protected]>
Signed-off-by: Panos Vagenas <[email protected]>
Co-authored-by: Maxim Lysak <[email protected]>
Co-authored-by: Michele Dolfi <[email protected]>
Co-authored-by: Panos Vagenas <[email protected]>
  • Loading branch information
4 people authored Oct 16, 2024
1 parent d504432 commit 7d3be0e
Show file tree
Hide file tree
Showing 144 changed files with 15,201 additions and 3,849 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/checks.yml
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ jobs:
poetry run pytest -v tests
- name: Run examples
run: |
for file in examples/*.py; do
for file in docs/examples/*.py; do
# Skip batch_convert.py
if [[ "$(basename "$file")" == "batch_convert.py" ]]; then
echo "Skipping $file"
Expand Down
20 changes: 10 additions & 10 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,13 +4,13 @@ repos:
hooks:
- id: black
name: Black
entry: poetry run black docling examples tests
entry: poetry run black docling docs/examples tests
pass_filenames: false
language: system
files: '\.py$'
- id: isort
name: isort
entry: poetry run isort docling examples tests
entry: poetry run isort docling docs/examples tests
pass_filenames: false
language: system
files: '\.py$'
Expand All @@ -20,21 +20,21 @@ repos:
# pass_filenames: false
# language: system
# files: '\.py$'
# - id: mypy
# name: MyPy
# entry: poetry run mypy docling
# pass_filenames: false
# language: system
# files: '\.py$'
- id: mypy
name: MyPy
entry: poetry run mypy docling
pass_filenames: false
language: system
files: '\.py$'
- id: nbqa_black
name: nbQA Black
entry: poetry run nbqa black examples
entry: poetry run nbqa black docs/examples
pass_filenames: false
language: system
files: '\.ipynb$'
- id: nbqa_isort
name: nbQA isort
entry: poetry run nbqa isort examples
entry: poetry run nbqa isort docs/examples
pass_filenames: false
language: system
files: '\.ipynb$'
Expand Down
276 changes: 21 additions & 255 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
# Docling

[![arXiv](https://img.shields.io/badge/arXiv-2408.09869-b31b1b.svg)](https://arxiv.org/abs/2408.09869)
[![Docs](https://img.shields.io/badge/docs-live-brightgreen)](https://ds4sd.github.io/docling/)
[![PyPI version](https://img.shields.io/pypi/v/docling)](https://pypi.org/project/docling/)
![Python](https://img.shields.io/badge/python-3.10%20%7C%203.11%20%7C%203.12-blue)
[![Poetry](https://img.shields.io/endpoint?url=https://python-poetry.org/badge/v0.json)](https://python-poetry.org/)
Expand All @@ -16,15 +17,19 @@
[![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit)
[![License MIT](https://img.shields.io/github/license/DS4SD/docling)](https://opensource.org/licenses/MIT)

Docling bundles PDF document conversion to JSON and Markdown in an easy, self-contained package.
Docling parses documents and exports them to the desired format with ease and speed.

## Features
* ⚡ Converts any PDF document to JSON or Markdown format, stable and lightning fast
* 📑 Understands detailed page layout, reading order and recovers table structures
* 📝 Extracts metadata from the document, such as title, authors, references and language
* 🔍 Includes OCR support for scanned PDFs
* 🤖 Integrates easily with LLM app / RAG frameworks like 🦙 LlamaIndex and 🦜🔗 LangChain
* 💻 Provides a simple and convenient CLI

* 🗂️ Multi-format support for input (PDF, DOCX etc.) & output (Markdown, JSON etc.)
* 📑 Advanced PDF document understanding incl. page layout, reading order & table structures
* 📝 Metadata extraction, including title, authors, references & language
* 🤖 Seamless LlamaIndex 🦙 & LangChain 🦜🔗 integration for powerful RAG / QA applications
* 🔍 OCR support for scanned PDFs
* 💻 Simple and convenient CLI

Explore the [documentation](https://ds4sd.github.io/docling/) to discover plenty examples and unlock the full power of Docling!


## Installation

Expand All @@ -35,269 +40,30 @@ pip install docling

Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.

<details>
<summary><b>Alternative PyTorch distributions</b></summary>

The Docling models depend on the [PyTorch](https://pytorch.org/) library.
Depending on your architecture, you might want to use a different distribution of `torch`.
For example, you might want support for different accelerator or for a cpu-only version.
All the different ways for installing `torch` are listed on their website <https://pytorch.org/>.

One common situation is the installation on Linux systems with cpu-only support.
In this case, we suggest the installation of Docling with the following options

```bash
# Example for installing on the Linux cpu-only version
pip install docling --extra-index-url https://download.pytorch.org/whl/cpu
```
</details>

<details>
<summary><b>Alternative OCR engines</b></summary>

Docling supports multiple OCR engines for processing scanned documents. The current version provides
the following engines.

| Engine | Installation | Usage |
| ------ | ------------ | ----- |
| [EasyOCR](https://github.com/JaidedAI/EasyOCR) | Default in Docling or via `pip install easyocr`. | `EasyOcrOptions` |
| Tesseract | System dependency. See description for Tesseract and Tesserocr below. | `TesseractOcrOptions` |
| Tesseract CLI | System dependency. See description below. | `TesseractCliOcrOptions` |

The Docling `DocumentConverter` allows to choose the OCR engine with the `ocr_options` settings. For example

```python
from docling.datamodel.base_models import ConversionStatus, PipelineOptions
from docling.datamodel.pipeline_options import PipelineOptions, EasyOcrOptions, TesseractOcrOptions
from docling.document_converter import DocumentConverter

pipeline_options = PipelineOptions()
pipeline_options.do_ocr = True
pipeline_options.ocr_options = TesseractOcrOptions() # Use Tesseract

doc_converter = DocumentConverter(
pipeline_options=pipeline_options,
)
```

#### Tesseract installation

[Tesseract](https://github.com/tesseract-ocr/tesseract) is a popular OCR engine which is available
on most operating systems. For using this engine with Docling, Tesseract must be installed on your
system, using the packaging tool of your choice. Below we provide example commands.
After installing Tesseract you are expected to provide the path to its language files using the
`TESSDATA_PREFIX` environment variable (note that it must terminate with a slash `/`).

For macOS, we reccomend using [Homebrew](https://brew.sh/).

```console
brew install tesseract leptonica pkg-config
TESSDATA_PREFIX=/opt/homebrew/share/tessdata/
echo "Set TESSDATA_PREFIX=${TESSDATA_PREFIX}"
```

For Debian-based systems.

```console
apt-get install tesseract-ocr tesseract-ocr-eng libtesseract-dev libleptonica-dev pkg-config
TESSDATA_PREFIX=$(dpkg -L tesseract-ocr-eng | grep tessdata$)
echo "Set TESSDATA_PREFIX=${TESSDATA_PREFIX}"
```

For RHEL systems.

```console
dnf install tesseract tesseract-devel tesseract-langpack-eng leptonica-devel
TESSDATA_PREFIX=/usr/share/tesseract/tessdata/
echo "Set TESSDATA_PREFIX=${TESSDATA_PREFIX}"
```

#### Linking to Tesseract
The most efficient usage of the Tesseract library is via linking. Docling is using
the [Tesserocr](https://github.com/sirfz/tesserocr) package for this.

If you get into installation issues of Tesserocr, we suggest using the following
installation options:

```console
pip uninstall tesserocr
pip install --no-binary :all: tesserocr
```
</details>

<details>
<summary><b>Docling development setup</b></summary>

To develop for Docling (features, bugfixes etc.), install as follows from your local clone's root dir:
```bash
poetry install --all-extras
```
</details>
More [detailed installation instructions](https://ds4sd.github.io/docling/installation/) are available in the docs.

## Getting started

### Convert a single document
To convert invidual documents, use `convert()`, for example:

To convert invidual PDF documents, use `convert_single()`, for example:
```python
from docling.document_converter import DocumentConverter

source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL
converter = DocumentConverter()
result = converter.convert_single(source)
print(result.render_as_markdown()) # output: "## Docling Technical Report[...]"
print(result.render_as_doctags()) # output: "<document><title><page_1><loc_20>..."
```

### Convert a batch of documents

For an example of batch-converting documents, see [batch_convert.py](https://github.com/DS4SD/docling/blob/main/examples/batch_convert.py).

From a local repo clone, you can run it with:

```
python examples/batch_convert.py
```
The output of the above command will be written to `./scratch`.

### CLI

You can also use Docling directly from your command line to convert individual files —be it local or by URL— or whole directories.

A simple example would look like this:
```console
docling https://arxiv.org/pdf/2206.01062
```

To see all available options (export formats etc.) run `docling --help`.

<details>
<summary><b>CLI reference</b></summary>

Here are the available options as of this writing (for an up-to-date listing, run `docling --help`):

```console
$ docling --help

Usage: docling [OPTIONS] source

╭─ Arguments ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ * input_sources source PDF files to convert. Can be local file / directory paths or URL. [default: None] [required] │
╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ --json --no-json If enabled the document is exported as JSON. [default: no-json] │
│ --md --no-md If enabled the document is exported as Markdown. [default: md] │
│ --txt --no-txt If enabled the document is exported as Text. [default: no-txt] │
│ --doctags --no-doctags If enabled the document is exported as Doc Tags. [default: no-doctags] │
│ --ocr --no-ocr If enabled, the bitmap content will be processed using OCR. [default: ocr] │
│ --backend [pypdfium2|docling] The PDF backend to use. [default: docling] │
│ --output PATH Output directory where results are saved. [default: .] │
│ --version Show version information. │
│ --help Show this message and exit. │
╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
```
</details>

### RAG
Check out the following examples showcasing RAG using Docling with standard LLM application frameworks:
- [Basic RAG pipeline with LlamaIndex 🦙](https://github.com/DS4SD/docling/tree/main/docs/examples/rag_llamaindex.ipynb)
- [Basic RAG pipeline with LangChain 🦜🔗](https://github.com/DS4SD/docling/tree/main/docs/examples/rag_langchain.ipynb)

## Advanced features

### Adjust pipeline features

The example file [custom_convert.py](https://github.com/DS4SD/docling/blob/main/examples/custom_convert.py) contains multiple ways
one can adjust the conversion pipeline and features.


#### Control pipeline options

You can control if table structure recognition or OCR should be performed by arguments passed to `DocumentConverter`:
```python
doc_converter = DocumentConverter(
artifacts_path=artifacts_path,
pipeline_options=PipelineOptions(
do_table_structure=False, # controls if table structure is recovered
do_ocr=True, # controls if OCR is applied (ignores programmatic content)
),
)
```

#### Control table extraction options

You can control if table structure recognition should map the recognized structure back to PDF cells (default) or use text cells from the structure prediction itself.
This can improve output quality if you find that multiple columns in extracted tables are erroneously merged into one.


```python
from docling.datamodel.pipeline_options import PipelineOptions

pipeline_options = PipelineOptions(do_table_structure=True)
pipeline_options.table_structure_options.do_cell_matching = False # uses text cells predicted from table structure model

doc_converter = DocumentConverter(
artifacts_path=artifacts_path,
pipeline_options=pipeline_options,
)
result = converter.convert(source)
print(result.document.export_to_markdown()) # output: "## Docling Technical Report[...]"
print(result.document.export_to_document_tokens()) # output: "<document><title><page_1><loc_20>..."
```

Since docling 1.16.0: You can control which TableFormer mode you want to use. Choose between `TableFormerMode.FAST` (default) and `TableFormerMode.ACCURATE` (better, but slower) to receive better quality with difficult table structures.

```python
from docling.datamodel.pipeline_options import PipelineOptions, TableFormerMode

pipeline_options = PipelineOptions(do_table_structure=True)
pipeline_options.table_structure_options.mode = TableFormerMode.ACCURATE # use more accurate TableFormer model

doc_converter = DocumentConverter(
artifacts_path=artifacts_path,
pipeline_options=pipeline_options,
)
```
Check out [Getting started](https://ds4sd.github.io/docling/).
You will find lots of tuning options to leverage all the advanced capabilities.

### Impose limits on the document size

You can limit the file size and number of pages which should be allowed to process per document:
```python
conv_input = DocumentConversionInput.from_paths(
paths=[Path("./test/data/2206.01062.pdf")],
limits=DocumentLimits(max_num_pages=100, max_file_size=20971520)
)
```
## Get help and support

### Convert from binary PDF streams

You can convert PDFs from a binary stream instead of from the filesystem as follows:
```python
buf = BytesIO(your_binary_stream)
docs = [DocumentStream(filename="my_doc.pdf", stream=buf)]
conv_input = DocumentConversionInput.from_streams(docs)
results = doc_converter.convert(conv_input)
```
### Limit resource usage

You can limit the CPU threads used by Docling by setting the environment variable `OMP_NUM_THREADS` accordingly. The default setting is using 4 CPU threads.

### Chunking

You can perform a hierarchy-aware chunking of a Docling document as follows:

```python
from docling.document_converter import DocumentConverter
from docling_core.transforms.chunker import HierarchicalChunker

doc = DocumentConverter().convert_single("https://arxiv.org/pdf/2206.01062").output
chunks = list(HierarchicalChunker().chunk(doc))
print(chunks[0])
# ChunkWithMetadata(
# path='#/main-text/1',
# text='DocLayNet: A Large Human-Annotated Dataset [...]',
# page=1,
# bbox=[107.30, 672.38, 505.19, 709.08],
# [...]
# )
```
Please feel free to connect with us using the [discussion section](https://github.com/DS4SD/docling/discussions).


## Technical report
Expand Down
Loading

0 comments on commit 7d3be0e

Please sign in to comment.