-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ea07e88
commit 2562b19
Showing
12 changed files
with
1,211 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
from sklearn.neighbors import KNeighborsClassifier | ||
from sklearn.svm import SVC | ||
from sklearn.tree import DecisionTreeClassifier | ||
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier | ||
from sklearn.linear_model import LogisticRegression | ||
#add the need classifiers when using this class | ||
|
||
|
||
|
||
class Classifier: | ||
|
||
def __init__(self, names=None, classifiers=None): | ||
|
||
self.cv_scores = {} | ||
|
||
#Default classifiers and parameters | ||
if names == None: | ||
|
||
self.names = [ | ||
"KNN", "Logistic Regression", "SVM", | ||
"Decision Tree", "Random Forest", "AdaBoost" | ||
] | ||
|
||
self.classifiers = [ | ||
|
||
KNeighborsClassifier(n_neighbors=1), | ||
LogisticRegression(C=1e5), | ||
SVC(kernel="linear"), | ||
DecisionTreeClassifier(max_depth=5), | ||
RandomForestClassifier(max_depth=5, n_estimators=10), | ||
AdaBoostClassifier() | ||
] | ||
|
||
else: | ||
self.names = names | ||
self.classifiers = classifiers | ||
|
||
for name in self.names: | ||
self.cv_scores[name] = [] | ||
|
||
|
||
|
||
def train(self, X_train, y_train): | ||
|
||
for name, clf in zip(self.names, self.classifiers): | ||
|
||
# Training the algorithm using the selected predictors and target. | ||
clf.fit(X_train, y_train) | ||
|
||
def classify(self, X_test, y_test): | ||
|
||
# Record error for training and testing | ||
DTS = {} | ||
|
||
for name, clf in zip(self.names, self.classifiers): | ||
|
||
preds = clf.predict(X_test) | ||
|
||
dic_label = { | ||
name: preds | ||
} | ||
|
||
DTS.update(dic_label) | ||
|
||
return DTS |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
from sklearn import preprocessing | ||
from sklearn.preprocessing import StandardScaler | ||
|
||
import hdf5storage #dependency | ||
import numpy as np | ||
np.set_printoptions(threshold=np.inf) | ||
|
||
|
||
class Dataset: | ||
def __init__(self, X, y): | ||
|
||
self.data = X | ||
self.target = y.flatten() | ||
|
||
# removing any row with at least one NaN value | ||
# TODO: remove also the corresponding target value | ||
self.data = self.data[~np.isnan(self.data).any(axis=1)] | ||
|
||
self.num_sample, self.num_features = self.data.shape[0], self.data.shape[1] | ||
|
||
# retrieving unique label for Dataset | ||
self.classes = np.unique(self.target) | ||
|
||
def standardizeDataset(self): | ||
|
||
# it simply standardize the data [mean 0 and std 1] | ||
if np.sum(np.std(self.data, axis=0)).astype('int32') == self.num_features and np.sum( | ||
np.mean(self.data, axis=0)) < 1 ** -7: | ||
print ('\tThe data were already standardized!') | ||
else: | ||
print ('Standardizing data....') | ||
self.data = StandardScaler().fit_transform(self.data) | ||
|
||
def normalizeDataset(self, norm): | ||
|
||
normalizer = preprocessing.Normalizer(norm=norm) | ||
self.data = normalizer.fit_transform(self.data) | ||
|
||
def scalingDataset(self): | ||
|
||
min_max_scaler = preprocessing.MinMaxScaler() | ||
self.data = min_max_scaler.fit_transform(self.data) | ||
|
||
def shufflingDataset(self): | ||
|
||
idx = np.random.permutation(self.data.shape[0]) | ||
self.data = self.data[idx] | ||
self.target = self.target[idx] | ||
|
||
|
||
def split(self, split_ratio=0.8): | ||
|
||
# shuffling data | ||
indices = np.random.permutation(self.num_sample) | ||
|
||
start = int(split_ratio * self.num_sample) | ||
training_idx, test_idx = indices[:start], indices[start:] | ||
X_train, X_test = self.data[training_idx, :], self.data[test_idx, :] | ||
y_train, y_test = self.target[training_idx], self.target[test_idx] | ||
|
||
return X_train, y_train, X_test, y_test, training_idx, test_idx | ||
|
||
def separateSampleClass(self): | ||
|
||
# Discriminating the classes sample | ||
self.ind_class = [] | ||
for i in xrange(0, len(self.classes)): | ||
self.ind_class.append(np.where(self.target == self.classes[i])) | ||
|
||
def getSampleClass(self): | ||
|
||
data = [] | ||
target = [] | ||
# Selecting the 'train sample' on the basis of the previously retrieved indices | ||
for i in xrange(0, len(self.classes)): | ||
data.append(self.data[self.ind_class[i]]) | ||
target.append(self.target[self.ind_class[i]]) | ||
|
||
return data, target | ||
|
||
def getIndClass(self): | ||
|
||
return self.ind_class |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
import numpy as np | ||
np.set_printoptions(threshold=np.inf) | ||
import sys | ||
sys.path.insert(0, './src') | ||
import SCBA as fs | ||
|
||
|
||
|
||
class FeatureSelector: | ||
|
||
def __init__(self, model=None, name=None, tp=None, params=None): | ||
|
||
|
||
self.name = name | ||
self.model = model | ||
self.tp = tp | ||
self.params = params | ||
|
||
|
||
|
||
def fit(self, X, y): | ||
|
||
idx = [] | ||
|
||
#add custom 'type' of Feature Selector | ||
if self.tp == 'filter': | ||
|
||
if self.name == 'Relief': | ||
''' | ||
add a custom Feature Selector such as: | ||
score = reliefF.reliefF(X, y) | ||
idx = reliefF.feature_ranking(score) | ||
''' | ||
|
||
elif self.tp == 'SLB': | ||
|
||
|
||
# SCBA method | ||
if self.name == 'GAD': | ||
|
||
alg = gd.GAD(X, self.params) | ||
_, idx = alg.iterative_GAD() | ||
|
||
if self.name == 'SCBA': | ||
scba = fs.SCBA(data=X, alpha=self.params['alpha'], norm_type=self.params['norm_type'], | ||
verbose=self.params['verbose'], thr=self.params['thr'], max_iter=self.params['max_iter'], | ||
affine=self.params['affine'], | ||
normalize=self.params['normalize'], | ||
step=self.params['step'], | ||
PCA=self.params['PCA'], | ||
GPU=self.params['GPU'], | ||
device = self.params['device']) | ||
|
||
nrmInd, sInd, repInd, _ = scba.admm() | ||
if self.params['type_indices'] == 'nrmInd': | ||
idx = nrmInd | ||
elif self.params['type_indices'] == 'repInd': | ||
idx = repInd | ||
else: | ||
idx = sInd | ||
|
||
return idx |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
import hdf5storage #dependency | ||
import numpy as np | ||
|
||
np.set_printoptions(threshold=np.inf) | ||
import scipy.io as sio | ||
|
||
class Loader: | ||
def __init__(self, file_path, name, variables, format, k_fold=None): | ||
|
||
|
||
# This Class provides several method for loading many type of dataset (matlab, csv, txt, etc) | ||
|
||
if format == 'matlab': # classic workspace | ||
|
||
mc = sio.loadmat(file_path) | ||
|
||
for variable in variables: | ||
setattr(self, variable, mc[variable]) | ||
|
||
elif format == 'matlab_struct': # struct one level | ||
print ('Loading data...') | ||
|
||
mc = sio.loadmat(file_path) | ||
mc = mc[name][0, 0] | ||
|
||
for variable in variables: | ||
setattr(self, variable, mc[variable]) | ||
|
||
elif format == 'custom_matlab': | ||
print ('Loading data...') | ||
|
||
mc = sio.loadmat(file_path) | ||
mc = mc[name][0, 0] | ||
|
||
for variable in variables: | ||
setattr(self, variable, mc[variable][0, 0]) | ||
|
||
elif format == 'matlab_v73': | ||
mc = hdf5storage.loadmat(file_path) | ||
|
||
for variable in variables: | ||
setattr(self, variable, mc[variable]) | ||
|
||
def getVariables(self, variables): | ||
|
||
D = {} | ||
|
||
for variable in variables: | ||
D[variable] = getattr(self, variable) | ||
|
||
return D |
Oops, something went wrong.