Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion projects/ExpoHybrid/ExpoHybridEstim.jl
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@ hybrid_model = constructHybridModel(
input_batchnorm = true
)

out = train(hybrid_model, df, (:k,); nepochs=300, batchsize=64, opt=AdamW(0.01, (0.9, 0.999), 0.01), loss_types=[:mse, :nse], training_loss=:nse, random_seed=123, yscale = identity, monitor_names=[:Resp0, :k])
out = train(hybrid_model, df, (:k,); nepochs=300, batchsize=64, opt=AdamW(0.01, (0.9, 0.999), 0.01), loss_types=[:mse, :nse], training_loss=:nse, random_seed=123, yscale = identity, monitor_names=[:Resp0, :k], normalize_predictors=:robust)


EasyHybrid.poplot(out)
Expand Down
19 changes: 10 additions & 9 deletions src/models/GenericHybridModel.jl
Original file line number Diff line number Diff line change
Expand Up @@ -291,9 +291,9 @@ end

# ───────────────────────────────────────────────────────────────────────────
# Forward pass for SingleNNHybridModel (optimized, no branching)
function (m::SingleNNHybridModel)(ds_k, ps, st)
# 1) get features
predictors = ds_k(m.predictors)
function (m::SingleNNHybridModel)(data, ps, st)

predictors, forcing = data

parameters = m.parameters

Expand Down Expand Up @@ -338,7 +338,7 @@ function (m::SingleNNHybridModel)(ds_k, ps, st)
end

# 5) unpack forcing data
forcing_data = unpack_keyedarray(ds_k, m.forcing)
forcing_data = unpack_keyedarray(forcing)

# 6) merge all parameters
all_params = merge(scaled_nn_params, global_params, fixed_params)
Expand All @@ -354,7 +354,9 @@ function (m::SingleNNHybridModel)(ds_k, ps, st)
end

# Forward pass for MultiNNHybridModel (optimized, no branching)
function (m::MultiNNHybridModel)(ds_k, ps, st)
function (m::MultiNNHybridModel)(data, ps, st)

predictors, forcing = data

parameters = m.parameters

Expand All @@ -374,8 +376,8 @@ function (m::MultiNNHybridModel)(ds_k, ps, st)
nn_states = NamedTuple()

for (nn_name, nn) in pairs(m.NNs)
predictors = m.predictors[nn_name]
nn_out, st_nn = LuxCore.apply(nn, ds_k(predictors), ps[nn_name], st[nn_name])
predictor_names = m.predictors[nn_name]
nn_out, st_nn = LuxCore.apply(nn, predictors(predictor_names), ps[nn_name], st[nn_name])
nn_outputs = merge(nn_outputs, NamedTuple{(nn_name,), Tuple{typeof(nn_out)}}((nn_out,)))
nn_states = merge(nn_states, NamedTuple{(nn_name,), Tuple{typeof(st_nn)}}((st_nn,)))
end
Expand Down Expand Up @@ -412,8 +414,7 @@ function (m::MultiNNHybridModel)(ds_k, ps, st)
all_params = merge(scaled_nn_params, global_params, fixed_params)

# 6) unpack forcing data

forcing_data = unpack_keyedarray(ds_k, m.forcing)
forcing_data = unpack_keyedarray(forcing)
all_kwargs = merge(forcing_data, all_params)

# 7) Apply mechanistic model
Expand Down
192 changes: 101 additions & 91 deletions src/train.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
export train, TrainResults

using Statistics: mean, std, median

# beneficial for plotting based on type TrainResults?
struct TrainResults
train_history
Expand Down Expand Up @@ -41,7 +43,7 @@ Train a hybrid model using the provided data and save the training process to a
"""
function train(hybridModel, data, save_ps; nepochs=200, batchsize=10, opt=Adam(0.01), patience=typemax(Int),
file_name=nothing, loss_types=[:mse, :r2], training_loss=:mse, agg=sum, train_from = nothing,
random_seed=nothing, shuffleobs = false, yscale=log10, monitor_names=[], return_model=:best)
random_seed=nothing, shuffleobs = false, yscale=log10, monitor_names=[], return_model=:best, normalize_predictors=false)
#! check if the EasyHybridMakie extension is loaded.
ext = Base.get_extension(@__MODULE__, :EasyHybridMakie)
if ext === nothing
Expand All @@ -57,6 +59,13 @@ function train(hybridModel, data, save_ps; nepochs=200, batchsize=10, opt=Adam(0

# ? split training and validation data
(x_train, y_train), (x_val, y_val) = splitobs(data_; at=0.8, shuffle=shuffleobs)

if normalize_predictors !== false
x_train1, x_val1 = scale(x_train[1], x_val[1], normalize_predictors)
x_train = (x_train1, x_train[2:end]...)
x_val = (x_val1, x_val[2:end]...)
end

train_loader = DataLoader((x_train, y_train), batchsize=batchsize, shuffle=true);

if isnothing(train_from)
Expand Down Expand Up @@ -373,114 +382,115 @@ Utility function to see if the data is already in the expected format or if furt

# Arguments:
- hm: The Hybrid Model
- data: either a Tuple of KeyedArrays or a single KeyedArray.
- data: either a Tuple of KeyedArrays, a single KeyedArray, or a DataFrame.

Returns a tuple of KeyedArrays
"""
function prepare_data(hm, data::KeyedArray)
targets = hm.targets
predictors_forcing = Symbol[]

# Collect all predictors and forcing variables by checking property names
for prop in propertynames(hm)
if occursin("predictors", string(prop))
val = getproperty(hm, prop)
if isa(val, AbstractVector)
append!(predictors_forcing, val)
elseif isa(val, Union{NamedTuple, Tuple})
append!(predictors_forcing, unique(vcat(values(val)...)))
end
function _collect_predictors_and_forcing(hm)
predictors = Symbol[]
forcing = Symbol[]
for prop in propertynames(hm)
prop_str = string(prop)
val = getproperty(hm, prop)
if occursin("predictors", prop_str)
if isa(val, AbstractVector)
append!(predictors, val)
elseif isa(val, Union{NamedTuple, Tuple})
append!(predictors, unique(vcat(values(val)...)))
end
end
for prop in propertynames(hm)
if occursin("forcing", string(prop))
val = getproperty(hm, prop)
if isa(val, AbstractVector)
append!(predictors_forcing, val)
elseif isa(val, Union{Tuple, NamedTuple})
append!(predictors_forcing, unique(vcat(values(val)...)))
end
elseif occursin("forcing", prop_str)
if isa(val, AbstractVector)
append!(forcing, val)
elseif isa(val, Union{NamedTuple, Tuple})
append!(forcing, unique(vcat(values(val)...)))
end
end
predictors_forcing = unique(predictors_forcing)

if isempty(predictors_forcing)
@warn "Note that you don't have predictors or forcing variables."
end
if isempty(targets)
@warn "Note that you don't have target names."
end
return (data(predictors_forcing), data(targets))
end
return (unique(predictors), unique(forcing))
end

function prepare_data(hm, data::DataFrame)
targets = hm.targets
predictors_forcing = Symbol[]

# Collect all predictors and forcing variables by checking property names
for prop in propertynames(hm)
if occursin("predictors", string(prop))
val = getproperty(hm, prop)
if isa(val, AbstractVector)
append!(predictors_forcing, val)
elseif isa(val, Union{NamedTuple, Tuple})
append!(predictors_forcing, unique(vcat(values(val)...)))
end
end
end
for prop in propertynames(hm)
if occursin("forcing", string(prop))
val = getproperty(hm, prop)
if isa(val, AbstractVector)
append!(predictors_forcing, val)
elseif isa(val, Union{Tuple, NamedTuple})
append!(predictors_forcing, unique(vcat(values(val)...)))
end
end
end
predictors_forcing = unique(predictors_forcing)

if isempty(predictors_forcing)
@warn "Note that you don't have predictors or forcing variables."
end
if isempty(targets)
@warn "Note that you don't have target names."
end
function _check_predictors_forcing_targets(predictors, forcing, targets)
isempty(predictors) && @warn "No predictors variables."
isempty(forcing) && @warn "No forcing variables - is a hybrid model?"
isempty(targets) && @warn "No target names."
end

all_predictor_cols = unique(vcat(values(predictors_forcing)...))
col_to_select = unique([all_predictor_cols; targets])

# subset to only the cols we care about
sdf = data[!, col_to_select]

# Separate predictor/forcing vs. target columns
predforce_cols = setdiff(col_to_select, targets)

# For each row, check if *any* predictor/forcing is missing
mask_missing_predforce = map(row -> any(ismissing, row), eachrow(sdf[:, predforce_cols]))

# For each row, check if *at least one* target is present (i.e. not all missing)
mask_at_least_one_target = map(row -> any(!ismissing, row), eachrow(sdf[:, targets]))

# Keep rows where predictors/forcings are *complete* AND there's some target present
keep = .!mask_missing_predforce .& mask_at_least_one_target
sdf = sdf[keep, col_to_select]

mapcols(col -> replace!(col, missing => NaN), sdf; cols = names(sdf, Union{Missing, Real}))

# Convert to Float32 and to your keyed array
ds_keyed = to_keyedArray(Float32.(sdf))
return prepare_data(hm, ds_keyed)
end
function prepare_data(hm, data::KeyedArray)
targets = hm.targets
predictors, forcing = _collect_predictors_and_forcing(hm)
_check_predictors_forcing_targets(predictors, forcing, targets)
return prepare_data(hm, data, predictors, forcing, targets)
end

function prepare_data(hm, data::DataFrame)
targets = hm.targets
predictors, forcing = _collect_predictors_and_forcing(hm)
_check_predictors_forcing_targets(predictors, forcing, targets)

all_predictor_cols = unique(vcat(values(predictors)...))
all_forcing_cols = unique(vcat(values(forcing)...))
col_to_select = unique([all_predictor_cols; all_forcing_cols; targets])

# subset to only the cols we care about
sdf = data[!, col_to_select]

# Separate predictor/forcing vs. target columns
predforce_cols = setdiff(col_to_select, targets)

# For each row, check if *any* predictor/forcing is missing
mask_missing_predforce = map(row -> any(ismissing, row), eachrow(sdf[:, predforce_cols]))

# For each row, check if *at least one* target is present (i.e. not all missing)
mask_at_least_one_target = map(row -> any(!ismissing, row), eachrow(sdf[:, targets]))

# Keep rows where predictors/forcings are *complete* AND there's some target present
keep = .!mask_missing_predforce .& mask_at_least_one_target
sdf = sdf[keep, col_to_select]

mapcols(col -> replace!(col, missing => NaN), sdf; cols = names(sdf, Union{Missing, Real}))

# Convert to Float32 and to your keyed array
ds_keyed = to_keyedArray(Float32.(sdf))
return prepare_data(hm, ds_keyed, predictors, forcing, targets)
end

function prepare_data(hm, data::Tuple)
return data
end

function prepare_data(hm::Union{SingleNNHybridModel, MultiNNHybridModel}, data::KeyedArray, predictors, forcing, targets)
return ((data(predictors), data(forcing)), data(targets))
end

function prepare_data(hm::LuxCore.AbstractLuxContainerLayer, data::KeyedArray, predictors, forcing, targets)
predictors_forcing = unique(vcat(predictors, forcing))
return (data(predictors_forcing), data(targets))
end

function get_ps_st(train_from::TrainResults)
return train_from.ps, train_from.st
end

function get_ps_st(train_from::Tuple)
return train_from
end

function scale(x_train::KeyedArray, x_val::KeyedArray, method::Symbol)
if method == :zscore
row_center = mean(x_train, dims=:col)
row_scale = std(x_train, dims=:col)
elseif method == :minmax
row_center = minimum(x_train, dims=:col)
row_scale = maximum(x_train, dims=:col) - row_center
elseif method == :robust
row_center = median(x_train, dims=:col)
row_scale = mapslices(s -> quantile(vec(s), eltype(row_center)(0.75)) - quantile(vec(s), eltype(row_center)(0.25)),
x_train; dims = :col)
end

row_scale[row_scale .== 0] .= eltype(row_scale)(1e-6)
scaled_train = (x_train .- row_center) ./ row_scale
scaled_val = (x_val .- row_center) ./ row_scale

return scaled_train, scaled_val
end
Loading