SentenceTransformer based on dunzhang/stella_en_1.5B_v5

This is a sentence-transformers model finetuned from dunzhang/stella_en_1.5B_v5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: dunzhang/stella_en_1.5B_v5
  • Maximum Sequence Length: 8096 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8096, 'do_lower_case': False}) with Transformer model: Qwen2Model 
  (1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 1536, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'The Tchaikovsky Symphony Orchestra is a Russian classical music orchestra established in 1930. It was founded as the Moscow Radio Symphony Orchestra, and served as the official symphony for the Soviet All-Union Radio network. Following the dissolution of the, Soviet Union in 1991, the orchestra was renamed in 1993 by the Russian Ministry of Culture in recognition of the central role the music of Tchaikovsky plays in its repertoire. The current music director is Vladimir Fedoseyev, who has been in that position since 1974.',
    'Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: Tchaikovsky Symphony Orchestra',
    'Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: Sierra del Lacandón',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.9458
cosine_accuracy@3 0.9687
cosine_accuracy@5 0.9751
cosine_accuracy@10 0.9818
cosine_precision@1 0.9458
cosine_precision@3 0.3229
cosine_precision@5 0.195
cosine_precision@10 0.0982
cosine_recall@1 0.9458
cosine_recall@3 0.9687
cosine_recall@5 0.9751
cosine_recall@10 0.9818
cosine_ndcg@10 0.9642
cosine_mrr@10 0.9585
cosine_map@100 0.959

Information Retrieval

Metric Value
cosine_accuracy@1 0.9448
cosine_accuracy@3 0.9697
cosine_accuracy@5 0.9754
cosine_accuracy@10 0.9825
cosine_precision@1 0.9448
cosine_precision@3 0.3232
cosine_precision@5 0.1951
cosine_precision@10 0.0982
cosine_recall@1 0.9448
cosine_recall@3 0.9697
cosine_recall@5 0.9754
cosine_recall@10 0.9825
cosine_ndcg@10 0.9641
cosine_mrr@10 0.9582
cosine_map@100 0.9587

Information Retrieval

Metric Value
cosine_accuracy@1 0.9448
cosine_accuracy@3 0.9673
cosine_accuracy@5 0.9721
cosine_accuracy@10 0.9805
cosine_precision@1 0.9448
cosine_precision@3 0.3224
cosine_precision@5 0.1944
cosine_precision@10 0.098
cosine_recall@1 0.9448
cosine_recall@3 0.9673
cosine_recall@5 0.9721
cosine_recall@10 0.9805
cosine_ndcg@10 0.9629
cosine_mrr@10 0.9572
cosine_map@100 0.9578

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_eval_batch_size: 4
  • gradient_accumulation_steps: 4
  • learning_rate: 2e-05
  • max_steps: 1500
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • warmup_steps: 5
  • bf16: True
  • tf32: True
  • optim: adamw_torch_fused
  • gradient_checkpointing: True
  • gradient_checkpointing_kwargs: {'use_reentrant': False}
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 4
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3.0
  • max_steps: 1500
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 5
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: True
  • gradient_checkpointing_kwargs: {'use_reentrant': False}
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss cosine_map@100
0.0185 100 0.4835 0.0751 0.9138
0.0369 200 0.0646 0.0590 0.9384
0.0554 300 0.0594 0.0519 0.9462
0.0739 400 0.0471 0.0483 0.9514
0.0924 500 0.0524 0.0455 0.9531
0.1108 600 0.0435 0.0397 0.9546
0.1293 700 0.0336 0.0394 0.9549
0.1478 800 0.0344 0.0374 0.9565
0.1662 900 0.0393 0.0361 0.9568
0.1847 1000 0.0451 0.0361 0.9578

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.2.0+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
4
Safetensors
Model size
1.54B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for FINGU-AI/Fingu-M-v2

Finetuned
(13)
this model

Evaluation results