-
Notifications
You must be signed in to change notification settings - Fork 11
feat(plot_qc_metrics): plot single cell quality control metrics #354
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: dev
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -31,6 +31,7 @@ | |
| import matplotlib.patches as mpatch | ||
| from functools import partial | ||
| from collections import OrderedDict | ||
| from typing import List, Optional | ||
|
|
||
|
|
||
| # Configure logging | ||
|
|
@@ -3826,3 +3827,92 @@ def present_summary_as_figure(summary_dict: dict) -> go.Figure: | |
| title="Data Summary" | ||
| ) | ||
| return fig | ||
|
|
||
| # single cell quality control metrics violin plot | ||
| def plot_qc_metrics( | ||
| adata, | ||
| stat_columns_list: Optional[List[str]] = None, | ||
| annotation=None, | ||
| log=False, | ||
| size=1, | ||
| table=None, | ||
| **kwargs | ||
| ): | ||
| """ | ||
| Generate violin plots for quality control metrics from an AnnData object. | ||
|
|
||
| Parameters | ||
| ---------- | ||
| adata : AnnData object | ||
| stat_columns_list (list): List of column names to compute statistics for. | ||
| If None, defaults to ['nFeature', 'nCount', 'percent.mt']. | ||
| annotation : str or None, optional | ||
| Column name in adata.obs to group the data by (default: None). | ||
| log : bool, optional | ||
| Whether to log-transform the data (default: False). | ||
| size : float, optional | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @abombin , would you like to check that the size is within the correct range? |
||
| Size of the points in the violin plot (default: 1). | ||
| **kwargs : dict | ||
| Additional keyword arguments are passed to the underlying matplotlib | ||
| plotting functions and Scanpy plotting utilities. This allows customization | ||
| of plot appearance, such as axis labels, colors, figure size, | ||
| and other matplotlib options. | ||
|
|
||
| Returns | ||
| ------- | ||
| dict | ||
| If annotation is None, returns a dictionary with keys | ||
| 'figure' and 'axes' for the whole dataset. | ||
| If annotation is provided, returns a dictionary mapping each group | ||
| to its own {'figure', 'axes'} dict for the subsetted AnnData. | ||
| """ | ||
|
|
||
| # if not provided select default stat columns | ||
| if stat_columns_list is None: | ||
| stat_columns_list = ['nFeature', 'nCount', 'percent.mt'] | ||
|
|
||
| # Check that required columns exist in adata.obs | ||
| check_annotation( | ||
| adata, | ||
| annotations=stat_columns_list, | ||
| should_exist=True) | ||
|
|
||
| if annotation is not None: | ||
| check_annotation(adata, annotations=annotation) | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Hi @abombin , you can combine that check with the check on line 3875 (just create one list with all the annotations) |
||
| results = {} | ||
| for group in adata.obs[annotation].unique(): | ||
| adata_subset = adata[adata.obs[annotation] == group] | ||
| violin_plot = sc.pl.violin( | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @abombin , I suggest to use "partial" to define the call once, and call it in various part of the code (e.g. here and in line 3903). This way, if you ever change it, you change it in one place. |
||
| adata_subset, | ||
| stat_columns_list, | ||
| size=size, | ||
| groupby=None, | ||
| log=log, | ||
| jitter=0.4, | ||
| multi_panel=True, | ||
| show=False, | ||
| use_raw=False, | ||
| **kwargs | ||
| ) | ||
| results[group] = { | ||
| "figure": violin_plot.figure, | ||
| "axes": violin_plot.axes | ||
| } | ||
| return results | ||
| else: | ||
| violin_plot = sc.pl.violin( | ||
| adata, | ||
| stat_columns_list, | ||
| size=size, | ||
| groupby=None, | ||
| log=log, | ||
| jitter=0.4, | ||
| multi_panel=True, | ||
| show=False, | ||
| use_raw=False, | ||
| **kwargs | ||
| ) | ||
| return { | ||
| "figure": violin_plot.figure, | ||
| "axes": violin_plot.axes | ||
| } | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,58 @@ | ||
| import unittest | ||
| from unittest import result | ||
| import numpy as np | ||
| import pandas as pd | ||
| import scanpy as sc | ||
| from anndata import AnnData | ||
| from matplotlib.figure import Figure | ||
| from matplotlib.axes import Axes | ||
| from spac.visualization import plot_qc_metrics | ||
| import numpy as np | ||
|
|
||
| class TestPlotQCMetrics(unittest.TestCase): | ||
| @classmethod | ||
| def setUpClass(cls): | ||
| np.random.seed(42) | ||
|
|
||
| def create_test_adata(self): | ||
| X = np.random.rand(10, 3) | ||
| obs = pd.DataFrame({ | ||
| "nCount": np.random.randint(100, 1000, 10), | ||
| "nFeature": np.random.randint(10, 100, 10), | ||
| "percent.mt": np.random.rand(10) * 10, | ||
| "group": ["A", "B"] * 5 | ||
| }) | ||
| var = pd.DataFrame(index=["gene1", "gene2", "gene3"]) | ||
| adata = AnnData(X=X, obs=obs, var=var) | ||
| return adata | ||
|
|
||
| def test_plot_qc_metrics_returns_figure_and_axes(self): | ||
| adata = self.create_test_adata() | ||
| result = plot_qc_metrics(adata) | ||
| self.assertIsInstance(result, dict) | ||
| self.assertIn("figure", result) | ||
| self.assertIn("axes", result) | ||
| self.assertIsInstance(result["figure"], Figure) | ||
| # axes can be a numpy array or a single Axes | ||
| axes = result["axes"] | ||
| self.assertTrue(isinstance(axes, (np.ndarray, Axes))) | ||
|
|
||
| def test_plot_qc_metrics_with_annotation_column(self): | ||
| adata = self.create_test_adata() | ||
| result = plot_qc_metrics(adata, annotation="group") | ||
| self.assertIsInstance(result["A"]["figure"], Figure) | ||
| print(result["A"]["axes"]) | ||
| print(type(result["A"]["axes"])) | ||
| self.assertTrue( | ||
| isinstance(result["A"]["axes"], Axes) or | ||
| all(isinstance(ax, Axes) for ax in result["A"]["axes"].flat) | ||
| ) | ||
|
|
||
| def test_plot_qc_metrics_with_log(self): | ||
| adata = self.create_test_adata() | ||
| result = plot_qc_metrics(adata, log=True) | ||
| self.assertIsInstance(result["figure"], Figure) | ||
| self.assertTrue(isinstance(result["axes"], (np.ndarray, Axes))) | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @abombin , would you like to check other aspects of the figure other than type of what is being returned? Something to verify that the figure actually has a valid plot in it? |
||
|
|
||
| if __name__ == "__main__": | ||
| unittest.main() | ||
Uh oh!
There was an error while loading. Please reload this page.