Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
339 changes: 339 additions & 0 deletions fossee-animations/AnalyticFunctions.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,339 @@
from manimlib.imports import *
import numpy as np

class intro(Scene):
def construct(self):
t1=TextMobject("A","property")
t1.set_color_by_tex_to_color_map({"property":GREEN})
t2=TextMobject("of")
t3=TextMobject("Analytic","functions")
t3.set_color_by_tex_to_color_map({"Analytic":RED})
t1.shift(UP)
t1.scale(1.5)
t3.shift(DOWN)
t3.scale(1.7)

self.play(Write(t1))
self.play(Write(t2))
self.play(Write(t3))
self.wait(2)

class definition(Scene):
def construct(self):
t1=TextMobject("Theorem:")
t1.set_color(GREEN)
t1.to_edge(UP+LEFT)
t2=TextMobject("If f is")
t2.next_to(t1,DOWN,buff=0.5)
t3=TextMobject("analytic")
t3.set_color(RED)
t3_dup=TextMobject("analytic")
t3.next_to(t2,RIGHT,buff=0.3)
t3_dup.next_to(t2,RIGHT,buff=0.3)
t4=TextMobject("on a domain D, and if $f'(x) $=0 $\\forall$ z $\\in$ D, then")
t4.next_to(t3,RIGHT,buff=0.3)
t5=TextMobject("f is constant in D")
t5.next_to(t2,DOWN,buff=0.3)
t5.shift(1.3*RIGHT)
r=Rectangle(height=2,width=26,fill_color=BLUE,fill_opacity=0.7,color=BLUE)
r.shift(5*LEFT+DOWN*0.8)
self.play(FadeIn(t1))
self.play(Write(t2))
self.play(Write(t3))
self.play(Write(t4))
self.play(Write(t5))
self.wait(2)
self.play(ReplacementTransform(t3_dup,r))
self.wait(1)
t6a=TextMobject("f is said to be analytic in D if and only if u(x,y) and v(x,y) have continuous first partial derivatives on D and $u{ _{ x } }=v{ _{ y } }$ and $u{ _{ y } }= -v{ _{ x } }$ where f(z)=u(x,y)+iv(x,y)")
#t6b=TextMobject()
t6a.scale(0.7)
t6a.set_color(WHITE)
t6a.shift(DOWN*0.7)
self.add(t6a)
self.wait(4)

class connection1(Scene):
def construct(self):
t1=TextMobject("Let's","analyse","this")
factorial=TextMobject("!")
factorial.scale(2.5)
factorial.next_to(t1,RIGHT,buff=0.6)
factorial.set_color(GREEN)
t1.set_color_by_tex_to_color_map({"analyse":BLUE})
self.play(Write(t1))
self.play(Write(factorial))
self.wait(2)

class pictorial(Scene):
def construct(self):
t1=TextMobject("Consider some domain, D")
img = ImageMobject('amoeba.png')
img.scale(4)
img.shift(LEFT*3)
self.play(Write(t1))
self.wait(1)
self.play(FadeOut(t1))
self.play(ShowCreation(img))
t2=TextMobject("Now consider some disc, $B_{ r }(a)$ inside D")
t2.scale(0.7)
t3=TextMobject("which represents a set of complex numbers,")
t3.scale(0.7)
number=TextMobject("$|z-z_{ 0 }|\\le r$")
number.scale(1.5)
t2.shift(3.5*RIGHT+2*UP)
t3.shift(3.5*RIGHT+2*UP)
number.shift(4*RIGHT+2*UP)
self.play(Write(t2))
self.wait(1.5)
self.play(ReplacementTransform(t2,t3))
self.wait(1.5)
self.play(ReplacementTransform(t3,number))
self.wait(2)
center=Dot(color=BLACK,radius=0.03)
center.shift(2.5*LEFT)
line=DashedLine(start=LEFT*2.5,end=LEFT*2.1,color=BLACK)
line.scale(0.7)
r=TextMobject("r")
r.scale(0.4)
r.shift(LEFT*2.3+UP*0.1)
c1=Circle(radius=0.4,fill_color=PURPLE_E,fill_opacity=0.7,color=PURPLE_E)
c2=Circle(radius=1.7,fill_color=PURPLE_E,fill_opacity=0.7,color=PURPLE_E)
c2.shift(3*RIGHT)
c1.shift(2.5*LEFT)
self.play(ReplacementTransform(number,c1))
self.play(Write(center),ShowCreation(line))
self.play(Write(r))
self.wait(2)

self.play(FadeOut(line),FadeOut(center),FadeOut(r))
an=TextMobject("a")
an.scale(0.5)
an.shift(2.8*RIGHT)
self.play(ReplacementTransform(c1,c2))
center.move_to(3*RIGHT)
self.add(center)
self.play(Write(an))
self.wait(1.2)

t4=TextMobject("Let c $\\in B_{ r }(a)$")
t4.shift(2.5*DOWN+3.3*RIGHT)
t4.scale(0.7)
self.play(Write(t4))
self.wait(0.2)
c=Dot(radius=0.03,color=BLACK)
c.shift(3.9*RIGHT+UP)
cn=TextMobject("c")
cn.scale(0.5)
cn.shift(RIGHT*3.9+UP*1.2)
self.play(Write(c))
self.play(Write(cn))
self.wait(1)

t5=TextMobject("Now pick a point b $\\in B_{ r }(a)$ as shown")
t5.shift(2.5*DOWN+3.3*RIGHT)
t5.scale(0.7)
b=Dot(radius=0.03,color=BLACK)
b.shift(3.9*RIGHT)
bn=TextMobject("b")
bn.scale(0.5)
bn.shift(RIGHT*3.9+DOWN*0.2)

self.play(ReplacementTransform(t4,t5))
self.play(Write(b))
self.play(Write(bn))
self.wait(1)

dl1=DashedLine(start=RIGHT*3,end=RIGHT*3.9,color=BLACK)
dl2=DashedLine(start=RIGHT*3.9,end=RIGHT*3.9+UP,color=BLACK)
self.play(Write(dl1),Write(dl2))
self.wait(0.5)

t6=TextMobject("Since given $\grave { f\left( z \\right) } $=0,")
t7=TextMobject("$u_{ x }=u_{ y }=v_{ x }=v_{ y }$=0")
t8=TextMobject("$u_{ y }=v_{ y }=0$ implies u(b)=u(c) and v(b)=v(c)")
t9=TextMobject("and $u_{ x }=v_{ x }=0$ implies u(a)=u(b) and v(a)=v(b)")
t9a=TextMobject("(i.e. a,b,c are coincident)")
t6.scale(0.7)
t7.scale(0.7)
t8.scale(0.7)
t9.scale(0.7)
t9a.scale(0.7)
t6.shift(2.5*DOWN+3.3*RIGHT)
t7.shift(2.5*DOWN+3.3*RIGHT)
t8.shift(2.5*DOWN+3.3*RIGHT)
t9.shift(2.5*DOWN+3.3*RIGHT)
t9a.shift(2.3*UP+3.3*RIGHT)
self.play(ReplacementTransform(t5,t6))
self.wait(1.5)
self.play(ReplacementTransform(t6,t7))
self.wait(1.5)
self.play(ReplacementTransform(t7,t8))
self.wait(1.5)
self.play(FadeOut(dl2))
self.play(ApplyMethod(c.shift,DOWN),ApplyMethod(cn.shift,DOWN))
self.wait(1)
self.play(ReplacementTransform(t8,t9))
self.play(FadeOut(dl1))
self.play(ApplyMethod(b.shift,LEFT*0.9),ApplyMethod(c.shift,LEFT*0.9),ApplyMethod(bn.shift,LEFT*0.9),ApplyMethod(cn.shift,LEFT*0.9))
self.wait(1)
self.play(Write(t9a))
self.wait(1.4)

self.play(FadeOut(t9a))
t10=TextMobject("Since c was an arbitrary point in $B_{ r }(a)$")
t11=TextMobject("Thus u and v are constant in $B_{ r }(a)$")
t12=TextMobject("$\\therefore $ f is constant in $B_{ r }(a)$")
t10.scale(0.7)
t11.scale(0.7)
t12.scale(0.7)
t10.shift(2.5*DOWN+3.3*RIGHT)
t11.shift(2.5*DOWN+3.3*RIGHT)
t12.shift(2.5*DOWN+3.3*RIGHT)
self.play(ReplacementTransform(t9,t10))
self.wait(1.5)
self.play(ReplacementTransform(t10,t11))
self.wait(1.5)
self.play(ReplacementTransform(t11,t12))
self.wait(2)
self.play(FadeOut(t12),FadeOut(center),FadeOut(an),FadeOut(c),FadeOut(cn),FadeOut(b),FadeOut(bn))
self.wait(0.4)
c1=Circle(radius=0.4,fill_color=PURPLE_E,fill_opacity=0.7,color=PURPLE_E)
c1.shift(2.5*LEFT)
self.play(ReplacementTransform(c2,c1))
self.wait(1)

t13=TextMobject("Now let b $\\notin B_{ r }(a)$ and be an arbitrary point in D")
t13.scale(0.7)
t13.shift(2*UP+3.3*RIGHT)
c3=Circle(radius=0.4,fill_color=GREEN_E,fill_opacity=0.7,color=GREEN_E)
c3.shift(2*LEFT+UP)
a=Dot(color=BLACK,radius=0.03)
an=TextMobject("a")
b=Dot(color=BLACK,radius=0.03)
bn=TextMobject("b")
an.scale(0.4)
bn.scale(0.4)
a.shift(3.5*LEFT+DOWN)
an.shift(3.5*LEFT+DOWN*0.8)
b.shift(2*LEFT+UP)
bn.shift(2*LEFT+1.2*UP)
self.play(Write(t13))
self.play(ApplyMethod(c1.shift,LEFT+DOWN))
self.play(Write(a),Write(an))
self.play(Write(c3))
self.play(Write(b),Write(bn))
self.wait(1.4)

t14=TextMobject("Since D is connected, $\\exists$ some curve connecting a and b")
t14.scale(0.7)
t14.shift(2*UP+2.9*RIGHT)
arc=ArcBetweenPoints(start=3.5*LEFT+DOWN,end=2*LEFT+UP,angle=TAU/6,color=DARK_BROWN)
self.play(ReplacementTransform(t13,t14))
self.wait(0.5)
self.play(ShowCreation(arc))
self.wait(1.5)

t15=TextMobject("$\\therefore$ we can draw discs along the same curve")
t15.scale(0.7)
t15.shift(2*UP+3.1*RIGHT)
circles=[0,0,0,0]
circles_dup=[0,0,0,0]
circles[0]=Circle(radius=0.34,color=BLUE)
circles[1]=Circle(radius=0.24,color=YELLOW)
circles[2]=Circle(radius=0.3,color=GREEN)
circles[3]=Circle(radius=0.35,color=RED)
circles[0].shift(2.9*LEFT+0.7*DOWN)
circles[1].shift(2.65*LEFT+0.3*DOWN)
circles[2].shift(2.3*LEFT)
circles[3].shift(2*LEFT+0.4*UP)

c1_dup=Circle(radius=0.4,color=WHITE)
c1_dup.shift(3.5*LEFT+DOWN)
circles_dup[0]=Circle(radius=0.34,color=WHITE)
circles_dup[1]=Circle(radius=0.24,color=WHITE)
circles_dup[2]=Circle(radius=0.3,color=WHITE)
circles_dup[3]=Circle(radius=0.35,color=WHITE)
circles_dup[0].shift(2.9*LEFT+0.7*DOWN)
circles_dup[1].shift(2.65*LEFT+0.3*DOWN)
circles_dup[2].shift(2.3*LEFT)
circles_dup[3].shift(2*LEFT+0.4*UP)
c3_dup=Circle(radius=0.4,color=WHITE)
c3_dup.shift(2*LEFT+UP)

self.play(ReplacementTransform(t14,t15))
self.play(Write(circles[0]))
self.play(Write(circles[1]))
self.play(Write(circles[2]))
self.play(Write(circles[3]))
self.wait(1)

t16=TextMobject("Since f is constant in the disc")
t17=TextMobject("around the point 'a', similarly f should be constant")
t18=TextMobject("in it's neighbouring disk and so on.")
#t19=TextMobject("Since the two disks overlap, the two constants must be equal.Similarly if we continue,we reach disc b. $\\therefore$ we get f(a)=f(b).Thus f is constant in D")
t19=TextMobject("Since the two discs overlap,")
t20=TextMobject("the two constants must be equal")
t21=TextMobject("Similarly if we continue,we reach disc b")
t22=TextMobject("$\\therefore$ we get f(a)=f(b)")
t23=TextMobject("Thus f is constant in D")
t16.scale(0.7)
t17.scale(0.7)
t18.scale(0.7)
t19.scale(0.7)
t20.scale(0.7)
t21.scale(0.7)
t22.scale(0.7)
t23.scale(0.7)
t16.shift(2*UP+3.15*RIGHT)
t17.next_to(t16,DOWN,buff=0.3)
t18.next_to(t17,DOWN,buff=0.3)
g1=VGroup(t16,t17,t18)
g2=VGroup(t19,t20,t21)
self.play(ReplacementTransform(t15,t16))
self.play(Write(t17))
self.play(Write(t18))
self.wait(1.4)

self.play(FadeOut(g1))
t19.shift(2*UP+3.15*RIGHT)
self.play(Write(t19),FadeIn(c1_dup),FadeIn(circles_dup[0]))
t20.next_to(t19,DOWN,buff=0.3)
self.play(Write(t20))
t21.next_to(t20,DOWN,buff=0.3)
self.play(FadeOut(c1_dup),FadeOut(circles_dup[0]))
self.play(Write(t21))
self.play(FadeIn(c1_dup))
self.play(FadeIn(circles_dup[0]))
self.play(FadeIn(circles_dup[1]))
self.play(FadeIn(circles_dup[2]))
self.play(FadeIn(circles_dup[3]))
self.play(FadeIn(c3_dup))
self.wait(0.7)
self.play(FadeOut(circles_dup[0]),FadeOut(circles_dup[1]),FadeOut(circles_dup[2]),FadeOut(circles_dup[3]))
self.wait(1.4)

self.play(FadeOut(g2),FadeOut(c1_dup),FadeOut(c3_dup))
t22.shift(2*UP+3.15*RIGHT)
self.play(Write(t22))
self.wait(1)
t23.shift(2*UP+3.15*RIGHT)
t23.scale(1.3)
self.play(ReplacementTransform(t22,t23))
self.wait(1)

self.play(FadeOut(circles[0]),FadeOut(circles[1]),FadeOut(circles[2]),FadeOut(circles[3]))
self.play(FadeOut(arc))
self.play(ApplyMethod(c3.shift,1.5*LEFT+2*DOWN),ApplyMethod(bn.shift,1.35*LEFT+1.95*DOWN),ApplyMethod(b.shift,1.5*LEFT+2*DOWN))
self.wait(2)

class conclusion(Scene):
def construct(self):
t1=TextMobject("Hence the","property","is","satisfied")
t2=TextMobject("$\\forall$ z $\\in$ D")
t1.shift(UP)
t2.next_to(t1,DOWN,buff=0.4)
t1.set_color_by_tex_to_color_map({"property":BLUE,"satisfied":YELLOW})
self.play(Write(t1))
self.play(Write(t2))
self.wait(3)
Loading