Skip to content

[ICLR 2025] πŸš€ CodeMMLU Evaluator: A framework for evaluating LM models on CodeMMLU MCQs benchmark.

License

Notifications You must be signed in to change notification settings

FSoft-AI4Code/CodeMMLU

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

25 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities

CodeMMLU

πŸ“° News β€’ πŸš€ Quick Start β€’ πŸ“‹ Evaluation β€’ πŸ“Œ Citation

πŸ“Œ About

CodeMMLU

CodeMMLU is a comprehensive benchmark designed to evaluate the capabilities of large language models (LLMs) in coding and software knowledge. It builds upon the structure of multiple-choice question answering (MCQA) to cover a wide range of programming tasks and domains, including code generation, defect detection, software engineering principles, and much more.

Why CodeMMLU?

  • CodeMMLU comprises over 10,000 questions curated from diverse, high-quality sources. It covers a wide spectrum of software knowledge, including general QA, code generation, defect detection, and code repair across various domains and more than 10 programming languages.

  • Precise and comprehensive: Checkout our LEADERBOARD for latest LLM rankings.

πŸ“° News

[2024-10-13] We are releasing CodeMMLU benchmark v0.0.1 and preprint report HERE!

πŸš€ Quick Start

Install CodeMMLU and setup dependencies via pip:

pip install codemmlu

Generate response for CodeMMLU MCQs benchmark:

codemmlu --model_name <your_model_name_or_path> \
  --subset <subset> \
  --backend <backend> \
  --output_dir <your_output_dir>

πŸ“‹ Evaluation

Build codemmlu from source:

git clone https://github.com/Fsoft-AI4Code/CodeMMLU.git
cd CodeMMLU
pip install -e .

Note

If you prefer vllm backend, we highly recommend you install vllm from official project before install codemmlu.

Generating with CodeMMLU questions:

codemmlu --model_name <your_model_name_or_path> \
  --peft_model <your_peft_model_name_or_path> \
  --subset all \
  --batch_size 16 \
  --backend [vllm|hf] \
  --max_new_tokens 1024 \
  --temperature 0.0 \
  --output_dir <your_output_dir> \
  --instruction_prefix <special_prefix> \
  --assistant_prefix <special_prefix> \
  --cache_dir <your_cache_dir>
⏬ API Usage :: click to expand ::
codemmlu [-h] [-V] [--subset SUBSET] [--batch_size BATCH_SIZE] [--instruction_prefix INSTRUCTION_PREFIX]
                [--assistant_prefix ASSISTANT_PREFIX] [--output_dir OUTPUT_DIR] [--model_name MODEL_NAME]
                [--peft_model PEFT_MODEL] [--backend BACKEND] [--max_new_tokens MAX_NEW_TOKENS]
                [--temperature TEMPERATURE] [--prompt_mode PROMPT_MODE] [--cache_dir CACHE_DIR] [--trust_remote_code]

==================== CodeMMLU ====================

optional arguments:
  -h, --help            show this help message and exit
  -V, --version         Get version
  --subset SUBSET       Select evaluate subset
  --batch_size BATCH_SIZE
  --instruction_prefix INSTRUCTION_PREFIX
  --assistant_prefix ASSISTANT_PREFIX
  --output_dir OUTPUT_DIR
                        Save generation and result path
  --model_name MODEL_NAME
                        Local path or Huggingface Hub link to load model
  --peft_model PEFT_MODEL
                        Lora config
  --backend BACKEND     LLM generation backend (default: hf)
  --max_new_tokens MAX_NEW_TOKENS
                        Number of max new tokens
  --temperature TEMPERATURE
  --prompt_mode PROMPT_MODE
                        Prompt available: zeroshot, fewshot, cot_zs, cot_fs
  --cache_dir CACHE_DIR
                        Cache for save model download checkpoint and dataset
  --trust_remote_code

List of supported backends:

Backend DecoderModel LoRA
Transformers (hf) βœ… βœ…
Vllm (vllm) βœ… βœ…

Leaderboard

To evaluate your model and submit your results to the leaderboard, please follow the instruction in data/README.md.

πŸ“Œ Citation

If you find this repository useful, please consider citing our paper:

@article{nguyen2024codemmlu,
  title={CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities},
  author={Nguyen, Dung Manh and Phan, Thang Chau and Le, Nam Hai and Doan, Thong T. and Nguyen, Nam V. and Pham, Quang and Bui, Nghi D. Q.},
  journal={arXiv preprint},
  year={2024}
}

About

[ICLR 2025] πŸš€ CodeMMLU Evaluator: A framework for evaluating LM models on CodeMMLU MCQs benchmark.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages