forked from lufficc/SSD
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 0d319e8
Showing
46 changed files
with
2,596 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
# compilation and distribution | ||
__pycache__ | ||
*.pyc | ||
*.so | ||
|
||
# pytorch/python/numpy formats | ||
*.pth | ||
*.pkl | ||
*.npy | ||
|
||
# ipython/jupyter notebooks | ||
*.ipynb | ||
**/.ipynb_checkpoints/ | ||
|
||
# Editor temporaries | ||
*.swn | ||
*.swo | ||
*.swp | ||
*~ | ||
|
||
# Pycharm editor settings | ||
.idea | ||
.DS_Store |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2018 lufficc | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
# High quality, fast, modular reference implementation of SSD in PyTorch 1.0 | ||
|
||
|
||
This repository implements [SSD (Single Shot MultiBox Detector)](https://arxiv.org/abs/1512.02325). The implementation is heavily influenced by the projects [ssd.pytorch](https://github.com/amdegroot/ssd.pytorch), [pytorch-ssd](https://github.com/qfgaohao/pytorch-ssd) and [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark). This repository aims to be the code base for researches based on SSD. | ||
|
||
## Installation | ||
### Requirements | ||
1. Python3 | ||
1. PyTorch 1.0 | ||
1. yacs | ||
1. GCC >= 4.9 | ||
1. OpenCV | ||
### Build | ||
``` | ||
# build nms | ||
cd ext | ||
python build.py build_ext develop | ||
``` | ||
|
||
## Performance | ||
### Origin Paper: | ||
|
||
| | VOC2007 test | | ||
| :-----: | :----------: | | ||
| SSD300* | 77.2 | | ||
| SSD512* | 79.8 | | ||
|
||
### Our Implementation: | ||
|
||
| | VOC2007 test | | ||
| :-----: | :----------: | | ||
| SSD300* | 77.8 | | ||
| SSD512* | - | | ||
|
||
### Details: | ||
|
||
<table> | ||
<thead> | ||
<tr> | ||
<th></th> | ||
<th>VOC2007 test</th> | ||
</tr> | ||
</thead> | ||
<tbody> | ||
<tr> | ||
<td>SSD300*</td> | ||
<td><pre><code>mAP: 0.7783 | ||
aeroplane : 0.8252 | ||
bicycle : 0.8445 | ||
bird : 0.7597 | ||
boat : 0.7102 | ||
bottle : 0.5275 | ||
bus : 0.8643 | ||
car : 0.8660 | ||
cat : 0.8741 | ||
chair : 0.6179 | ||
cow : 0.8279 | ||
diningtable : 0.7862 | ||
dog : 0.8519 | ||
horse : 0.8630 | ||
motorbike : 0.8515 | ||
person : 0.8024 | ||
pottedplant : 0.5079 | ||
sheep : 0.7685 | ||
sofa : 0.7926 | ||
train : 0.8704 | ||
tvmonitor : 0.7554</code></pre></td> | ||
</tr> | ||
<tr> | ||
<td>SSD512*</td> | ||
<td><pre><code>-</code></pre></td> | ||
</tr> | ||
</tbody></table> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
MODEL: | ||
NUM_CLASSES: 21 | ||
INPUT: | ||
IMAGE_SIZE: 300 | ||
DATASETS: | ||
TRAIN: ("voc_2007_train", "voc_2007_val", "voc_2012_train", "voc_2012_val") | ||
TEST: ("voc_2007_test", ) | ||
SOLVER: | ||
MAX_ITER: 120000 | ||
LR_STEPS: [80000, 100000] | ||
GAMMA: 0.1 | ||
BATCH_SIZE: 32 | ||
LR: 1e-3 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
MODEL: | ||
NUM_CLASSES: 21 | ||
PRIORS: | ||
FEATURE_MAPS: [64, 32, 16, 8, 4, 2, 1] | ||
STRIDES: [8, 16, 32, 64, 128, 256, 512] | ||
MIN_SIZES: [35.84, 76.8, 153.6, 230.4, 307.2, 384.0, 460.8] | ||
MAX_SIZES: [76.8, 153.6, 230.4, 307.2, 384.0, 460.8, 537.65] | ||
ASPECT_RATIOS: [[2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]] | ||
BOXES_PER_LOCATION: [4, 6, 6, 6, 6, 4, 4] | ||
INPUT: | ||
IMAGE_SIZE: 512 | ||
DATASETS: | ||
TRAIN: ("voc_2007_train", "voc_2007_val", "voc_2012_train", "voc_2012_val") | ||
TEST: ("voc_2007_test", ) | ||
SOLVER: | ||
MAX_ITER: 120000 | ||
LR_STEPS: [80000, 100000] | ||
GAMMA: 0.1 | ||
BATCH_SIZE: 24 | ||
LR: 1e-3 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
import glob | ||
import os | ||
|
||
import torch | ||
from PIL import Image | ||
from tqdm import tqdm | ||
from ssd.config import cfg | ||
from ssd.modeling.predictor import Predictor | ||
from ssd.modeling.vgg_ssd import build_ssd_model | ||
from ssd.datasets.voc_dataset import VOCDataset | ||
import argparse | ||
import numpy as np | ||
|
||
from ssd.utils.viz import draw_bounding_boxes | ||
|
||
|
||
def run_demo(cfg, weights_file, iou_threshold, score_threshold, images_dir, output_dir, dataset_type): | ||
if dataset_type == "voc": | ||
class_names = VOCDataset.class_names | ||
else: | ||
raise NotImplementedError('Not implemented now.') | ||
|
||
device = torch.device(cfg.MODEL.DEVICE) | ||
model = build_ssd_model(cfg, is_test=True) | ||
model.load(weights_file) | ||
print('Loaded weights from {}.'.format(weights_file)) | ||
model = model.to(device) | ||
predictor = Predictor(cfg=cfg, | ||
model=model, | ||
iou_threshold=iou_threshold, | ||
score_threshold=score_threshold, | ||
device=device) | ||
cpu_device = torch.device("cpu") | ||
|
||
image_paths = glob.glob(os.path.join(images_dir, '*.jpg')) | ||
|
||
if not os.path.exists(output_dir): | ||
os.makedirs(output_dir) | ||
|
||
for image_path in tqdm(image_paths): | ||
image = Image.open(image_path).convert("RGB") | ||
image = np.array(image) | ||
output = predictor.predict(image) | ||
boxes, labels, scores = [o.to(cpu_device).numpy() for o in output] | ||
drawn_image = draw_bounding_boxes(image, boxes, labels, scores, class_names).astype(np.uint8) | ||
image_name = os.path.basename(image_path) | ||
Image.fromarray(drawn_image).save(os.path.join(output_dir, image_name)) | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser(description="SSD Evaluation on VOC Dataset.") | ||
parser.add_argument( | ||
"--config-file", | ||
default="", | ||
metavar="FILE", | ||
help="path to config file", | ||
type=str, | ||
) | ||
parser.add_argument("--weights", type=str, help="Trained weights.") | ||
parser.add_argument("--iou_threshold", type=float, default=0.5) | ||
parser.add_argument("--score_threshold", type=float, default=0.5) | ||
parser.add_argument("--images_dir", default='demo', type=str, help='Specify a image dir to do prediction.') | ||
parser.add_argument("--output_dir", default='demo/result', type=str, help='Specify a image dir to predict.') | ||
parser.add_argument("--dataset_type", default="voc", type=str, help='Specify dataset type. Currently support voc and coco.') | ||
|
||
parser.add_argument( | ||
"opts", | ||
help="Modify config options using the command-line", | ||
default=None, | ||
nargs=argparse.REMAINDER, | ||
) | ||
args = parser.parse_args() | ||
print(args) | ||
|
||
cfg.merge_from_file(args.config_file) | ||
cfg.merge_from_list(args.opts) | ||
cfg.freeze() | ||
|
||
print("Loaded configuration file {}".format(args.config_file)) | ||
with open(args.config_file, "r") as cf: | ||
config_str = "\n" + cf.read() | ||
print(config_str) | ||
print("Running with config:\n{}".format(cfg)) | ||
|
||
run_demo(cfg=cfg, | ||
weights_file=args.weights, | ||
iou_threshold=args.iou_threshold, | ||
score_threshold=args.score_threshold, | ||
images_dir=args.images_dir, | ||
output_dir=args.output_dir, | ||
dataset_type=args.dataset_type) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
import os | ||
|
||
import torch | ||
from tqdm import tqdm | ||
from ssd.config import cfg | ||
from ssd.datasets import build_dataset | ||
from ssd.modeling.predictor import Predictor | ||
from ssd.modeling.vgg_ssd import build_ssd_model | ||
from ssd.utils.eval_detection_voc import eval_detection_voc | ||
|
||
import argparse | ||
import numpy as np | ||
|
||
|
||
def do_evaluation(cfg, model, test_dataset, output_dir): | ||
class_names = test_dataset.class_names | ||
device = torch.device(cfg.MODEL.DEVICE) | ||
model.eval() | ||
predictor = Predictor(cfg=cfg, | ||
model=model, | ||
iou_threshold=cfg.TEST.NMS_THRESHOLD, | ||
score_threshold=cfg.TEST.CONFIDENCE_THRESHOLD, | ||
device=device) | ||
|
||
cpu_device = torch.device("cpu") | ||
|
||
pred_boxes_list = [] | ||
pred_labels_list = [] | ||
pred_scores_list = [] | ||
gt_boxes_list = [] | ||
gt_labels_list = [] | ||
gt_difficults = [] | ||
for i in tqdm(range(len(test_dataset))): | ||
image_id, annotation = test_dataset.get_annotation(i) | ||
gt_boxes, gt_labels, is_difficult = annotation | ||
gt_boxes_list.append(gt_boxes) | ||
gt_labels_list.append(gt_labels) | ||
gt_difficults.append(is_difficult.astype(np.bool)) | ||
|
||
image = test_dataset.get_image(i) | ||
output = predictor.predict(image) | ||
boxes, labels, scores = [o.to(cpu_device).numpy() for o in output] | ||
|
||
pred_boxes_list.append(boxes) | ||
pred_labels_list.append(labels) | ||
pred_scores_list.append(scores) | ||
|
||
result = eval_detection_voc(pred_bboxes=pred_boxes_list, | ||
pred_labels=pred_labels_list, | ||
pred_scores=pred_scores_list, | ||
gt_bboxes=gt_boxes_list, | ||
gt_labels=gt_labels_list, | ||
gt_difficults=gt_difficults, | ||
iou_thresh=0.5, | ||
use_07_metric=True) | ||
|
||
result_str = "mAP: {:.4f}\n".format(result["map"]) | ||
for i, ap in enumerate(result["ap"]): | ||
if i == 0: # skip background | ||
continue | ||
result_str += "{:<16}: {:.4f}\n".format(class_names[i], ap) | ||
print(result_str) | ||
prediction_path = os.path.join(output_dir, "result.txt") | ||
with open(prediction_path, "w") as f: | ||
f.write(result_str) | ||
|
||
|
||
def evaluation(cfg, weights_file, output_dir): | ||
if not os.path.exists(output_dir): | ||
os.makedirs(output_dir) | ||
|
||
test_dataset = build_dataset(dataset_list=cfg.DATASETS.TEST) | ||
print("Test dataset size: {}".format(len(test_dataset))) | ||
|
||
device = torch.device(cfg.MODEL.DEVICE) | ||
model = build_ssd_model(cfg, is_test=True) | ||
model.load(weights_file) | ||
print('Loaded weights from {}.'.format(weights_file)) | ||
model.to(device) | ||
do_evaluation(cfg, model, test_dataset, output_dir) | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser(description='SSD Evaluation on VOC Dataset.') | ||
parser.add_argument( | ||
"--config-file", | ||
default="", | ||
metavar="FILE", | ||
help="path to config file", | ||
type=str, | ||
) | ||
parser.add_argument("--weights", type=str, help="Trained weights.") | ||
parser.add_argument("--output_dir", default="eval_results", type=str, help="The directory to store evaluation results.") | ||
|
||
parser.add_argument( | ||
"opts", | ||
help="Modify config options using the command-line", | ||
default=None, | ||
nargs=argparse.REMAINDER, | ||
) | ||
args = parser.parse_args() | ||
print(args) | ||
|
||
cfg.merge_from_file(args.config_file) | ||
cfg.merge_from_list(args.opts) | ||
cfg.freeze() | ||
|
||
print("Loaded configuration file {}".format(args.config_file)) | ||
with open(args.config_file, "r") as cf: | ||
config_str = "\n" + cf.read() | ||
print(config_str) | ||
print("Running with config:\n{}".format(cfg)) | ||
evaluation(cfg, weights_file=args.weights, output_dir=args.output_dir) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
Empty file.
Oops, something went wrong.