Skip to content

Dockerfile base designed to provide a sharable, stable set of libraries for data science work. Thanks to the awesome Florian Geigl (@floriangeigl) for making his implementation available.

Notifications You must be signed in to change notification settings

GullyBurns/docker-DataScience

 
 

Repository files navigation

Data Science Image

Dockerfile containing lots of tools for Data Science

Run

docker run --rm -i -t 
  -p 8888:8888
  -p 8889:8889 
  -p 8787:8787 
  -p 2222:22
  -p 9001:9001
  -v "${pwd}:/data/" 
  --name dsdocker 
  floriangeigl/datascience /bin/bash

Ports

After starting the container you should be able to access jupyter (python 3, julia & R) over http://localhost:8888 (jupyter labs runs on 8889). Furthermore, you can access an r-studio-server at http://localhost:8787. Supervisord webservice (service status; restart services; logs; ...) on 9001. If you want to ssh into the container simply use port 2222.

Credentials

SSh credentials

root:datascience

Tips & Tricks

Windows Shortcut

Open a powershell and open your profile-file using the follwing command.

notepad $PROFILE

paste the following lines into the notepad and save the file.

function dsdocker {
docker run --rm -i -t -p 8888:8888 -p 8889:8889 -p 8787:8787 -p 2222:22 -p 9001:9001 -v "${pwd}:/data" --name dsdocker floriangeigl/datascience /bin/bash
}

Linux Shortcut

Add an alias with the following command (notice the differnce with pwd)

dsdocker='docker run --rm -it -p 8888:8888 -p 8889:8889 -p 8787:8787 -p 2222:22 -p 9001:9001 -v $(pwd):/data --name dsdocker floriangeigl/datascience /bin/bash'

Cygwin Shortcut

dsdocker='docker run --rm -it -p 8888:8888 -p 8889:8889 -p 8787:8787 -p 2222:22 -p 9001:9001 -v $(cygpath -aw $(pwd)):/data --name dsdocker floriangeigl/datascience /bin/bash'

No you can simple fire up a Data Science container by typing dsdocker in your powershell. This will also mount the working directory into /data/ in the docker container.

About

Dockerfile base designed to provide a sharable, stable set of libraries for data science work. Thanks to the awesome Florian Geigl (@floriangeigl) for making his implementation available.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Dockerfile 39.3%
  • Jupyter Notebook 24.5%
  • Shell 13.2%
  • JavaScript 11.4%
  • Julia 7.0%
  • R 4.6%