Skip to content

H-Liu1997/Pytorch-Networks

Repository files navigation

Pytorch Networks

The Pytorch implementations of famous basic networks. Unscheduled update.

license stars

Accuracy Report

Model Dataset #Params Epochs Test Prec(Paper) Test Prec(This impl)
ResNet-20 CIFAR-10 0.27M 140,180,200 91.25% 92.02%
ResNet-32 CIFAR-10 0.46M 140,180,200 92.49% 92.61%
ResNet-44 CIFAR-10 0.66M 100,150,200 92.83% 92.46%
ResNet-56 CIFAR-10 0.85M 100,150,200 93.03% 93.22%
ResNet-110 CIFAR-10 1.73M 82,123,164 93.57% 93.40%
ResNet-18(A) CIFAR-10 11.0M 100,150,200 - 93.54%
ResNet-18(B) CIFAR-10 11.17M 80,110,120 - 94.51%
ResNet-50 CUB-200 23.92M 26,36,40 - 81.74%
ResNeXt-50 CUB-200 23.39M 26,36,40 - 82.70%
RegNetX-4.0 CUB-200 21.03M 26,36,40 - 84.31%
RegNetY-8.0 CUB-200 37.57M 26,36,40 - 84.40%
RegNetY-8.0 CUB-200 37.57M cos60+wp - 84.86%
RegNetY-32.0 CUB-200 142.08M cos60 - 85.23%
EfficientNet-B2 CUB-200 7.98M 26,36,40 - 82.60%
RegY32+EB2+NeXt50 CUB-200 - - - 87.31%

For backbone networks

Most of backbone networks already have pytorch official version(ResNet.etc), my implementations have a little diffience with them because of my programming habits

For other networks

Some networks don't have offical pytorch version for several reasons(author didn't public the code.etc), my implementations are totally original reproductions

Network list

Backbone(chronological order)

Common Type:

  • AlexNet 2012
  • NIN 2013
  • VGG 2014
  • Inception/GoogLeNet 2014
  • InceptionV2/V3 2015
  • InceptionV4/Res 2016
  • ResNet 2015
  • ResNetV2 2016
  • ResNeXt 2016
  • DenseNet 2016
  • SENet 2017
  • MnasNet 2018
  • EfficientNet 2019

Light Type:

  • ShuffleNet 2017
  • MobileNet 2017

Other:

  • BasicGNN

Pose Estimation(chronological order)

  • OpenPose 2015
  • Hourglass 2015
  • GNNlikeCNN 2015
  • SimpleBaseline 2017
  • CPN 2017
  • OpenPose 2017
  • FPNPoseNet 2017
  • CPN+GNN 2018

Detection

  • Darknet-19 2016
  • Darknet-53 2018

Future Work: Pytorch loss

Will release a new repertory in the future (not in current repertory)

  • Focusloss 2016
  • labelsmooth

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages