Skip to content

[수정] build_configuration.py 수정, [추가] train.py 학습 추가, pytorch_lightnin… #14

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion build_configuration.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,11 +9,12 @@
def main(args):

tokenizer = BartTokenizer.from_pretrained(args.tokenizer_path)
bart_config = BartConfig()
bart_config = BartConfig.from_pretrained('facebook/bart-base')
bart_config.vocab_size = len(tokenizer)
bart_config.eos_token_id = tokenizer.eos_token_id
bart_config.bos_token_id = tokenizer.bos_token_id
bart_config.pad_token_id = tokenizer.pad_token_id
bart_config.mask_token_id = tokenizer.mask_token_id

bart_config.save_pretrained(args.config_path)

Expand Down
4 changes: 3 additions & 1 deletion src/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,8 @@ def train_dataloader(self):
dataset=dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
collate_fn=self.collate_fn)
collate_fn=self.collate_fn,
drop_last=True)

return dataloader

Expand Down Expand Up @@ -138,3 +139,4 @@ def main(args):

args = parser.parse_args()
main(args)

76 changes: 76 additions & 0 deletions src/module.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
import pytorch_lightning as pl
import torch
import torchvision

from transformers import BartForConditionalGeneration
from transformers import BartConfig

from pl_bolts.optimizers.lr_scheduler import LinearWarmupCosineAnnealingLR
from pl_bolts.optimizers.lars_scheduling import LARSWrapper

class BartModule(pl.LightningModule):

def __init__(self, config, learning_rate,
weight_decay, max_epochs, warmup_epochs):
super(BartModule, self).__init__()

self.save_hyperparameters()
self.config = BartConfig.from_pretrained(config)
self.model = BartForConditionalGeneration(
config=self.config)

self.train_step = 0

def forward(self, input_ids, attention_mask=None, labels=None):
output = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
return_dict=True, output_hidden_states=True)
return output

def shared_step(self, batch):

input_ids, attention_mask, labels = batch
output = self.forward(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels)
loss = output.loss

pred = torch.argmax(output.logits, axis=2)
pred = pred.eq(labels).view(-1).to(dtype=torch.float)
pred = pred.mean()
return loss, pred

def training_step(self, batch, batch_idx):

self.train_step += 1

loss, pred = self.shared_step(batch)

self.logger.experiment.add_scalar('data/train_loss', loss, self.train_step)
self.logger.experiment.add_scalar('data/train_pred', pred, self.train_step)
self.logger.experiment.add_scalar('data/lr', self.optimizers[0].param_groups[0]['lr'], self.train_step)

return loss

def configure_optimizers(self):

optimizer = torch.optim.Adam(
self.parameters(),
lr=self.hparams.learning_rate,
weight_decay=self.hparams.weight_decay)

optimizer = LARSWrapper(optimizer)

scheduler = LinearWarmupCosineAnnealingLR(
optimizer,
warmup_epochs=self.hparams.warmup_epochs,
max_epochs=self.hparams.max_epochs
)

self.optimizers = [optimizer]

return self.optimizers, [scheduler]

64 changes: 64 additions & 0 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,72 @@
To implement code for training your model.
"""
import pytorch_lightning
import argparse
import torch

import pytorch_lightning as pl

from src.module import BartModule
from src.data import BartDataModule
from pathlib import Path
from transformers import BartTokenizer

from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import loggers

pytorch_lightning.seed_everything(777)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

def main():

parser = argparse.ArgumentParser()
parser.add_argument('--tokenizer_path', default='tokenizers', type=str)
parser.add_argument('--corpus', default='test.txt', type=str)
parser.add_argument('--mask_path', default='dataset.json', type=str)
parser.add_argument('--config_path', default='kobart', type=str)
parser.add_argument('--logger', default='kobart', type=str)
parser.add_argument('--learning_rate', default=5e-4, type=float)
parser.add_argument('--weight_decay', default=5e-4, type=float)
parser.add_argument('--max_epochs', default=100, type=int)
parser.add_argument('--warmup_epochs', default=3, type=int)
args = parser.parse_args()

proj_dir = Path()
corpus_dir = proj_dir / "corpus"
comment_dir = corpus_dir / "comment"
source_path = comment_dir / args.corpus
mask_path = comment_dir / args.mask_path

tokenizer = BartTokenizer.from_pretrained(args.tokenizer_path)
dm = BartDataModule(
source_path=source_path,
mask_path=mask_path,
tokenizer=tokenizer,
batch_size=2,
num_workers=1)
dm.setup()
train_dataloader = dm.train_dataloader()

checkpoint_callback = ModelCheckpoint(
save_top_k=-1, verbose=True)
logger = loggers.TensorBoardLogger(args.logger)
model = BartModule(
config=args.config_path,
learning_rate=args.learning_rate,
weight_decay=args.weight_decay,
max_epochs=args.max_epochs,
warmup_epochs=args.warmup_epochs)

device_count = torch.cuda.device_count()
trainer = pl.Trainer(
# gpus=device_count,
# distributed_backend='ddp',
max_epochs=args.max_epochs,
checkpoint_callback=checkpoint_callback,
logger=logger)

trainer.fit(model, train_dataloader)

if __name__ == '__main__':
main()