epidemiology_sft_10000_mcq
This model is a fine-tuned version of mistralai/Mistral-Nemo-Instruct-2407 on the epidemiology_10000_mcq dataset. It achieves the following results on the evaluation set:
- Loss: 0.0037
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 48
- total_eval_batch_size: 48
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0059 | 0.1596 | 30 | 0.0058 |
0.0058 | 0.3191 | 60 | 0.0059 |
0.0058 | 0.4787 | 90 | 0.0058 |
0.0058 | 0.6383 | 120 | 0.0058 |
0.0058 | 0.7979 | 150 | 0.0058 |
0.0057 | 0.9574 | 180 | 0.0057 |
0.0057 | 1.1170 | 210 | 0.0057 |
0.0056 | 1.2766 | 240 | 0.0059 |
0.0052 | 1.4362 | 270 | 0.0046 |
0.004 | 1.5957 | 300 | 0.0038 |
0.0041 | 1.7553 | 330 | 0.0038 |
0.0042 | 1.9149 | 360 | 0.0037 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for Howard881010/epidemiology_sft_10000_mcq
Base model
mistralai/Mistral-Nemo-Base-2407
Finetuned
mistralai/Mistral-Nemo-Instruct-2407